Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 19:32

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

Lương Nguyệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 23:44

a) Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Anh Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 22:36

a) Xét ΔABC có 

\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)

\(\Leftrightarrow\widehat{B}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)

mà BD+CD=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)

Nguyễn Phương Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 6 2023 lúc 16:57

loading...

 

Ngọc Tuyết
Xem chi tiết
Thu Thao
23 tháng 4 2021 lúc 21:55

undefined

vân
Xem chi tiết
an mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 19:25

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

Minh Phương
9 tháng 5 2023 lúc 19:39

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

Phần Nhã Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2024 lúc 14:17

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>\(BC=\sqrt{25}=5\left(cm\right)\)

b: Xét ΔCAB vuông tại A và ΔCAI vuông tại A có

CA chung

AB=AI

Do đó: ΔCAB=ΔCAI

=>CB=CI

=>ΔCBI cân tại C

c: Ta có; ΔCAB=ΔCAI

=>\(\widehat{ACB}=\widehat{ACI}\)

Xét ΔCMA vuông tại M và ΔCNA vuông tại N có

CA chung

\(\widehat{MCA}=\widehat{NCA}\)

Do đó: ΔCMA=ΔCNA

d: Ta có: ΔCMA=ΔCNA

=>CM=CN

Xét ΔCIB có \(\dfrac{CM}{CI}=\dfrac{CN}{CB}\)

nên MN//IB

Vy Huỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 10:51

a: BC=căn 3^2+4^2=5cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔABD=ΔEBD

 

Phạm Hương
Xem chi tiết

a) Ta có : AB2 = 52 = 25 cm

Mà AC2 + BC2 = 42 + 32 = 15 + 9 = 25cm

=> AB2 = AC2 + BC2 

=> ∆ABC vuông tại C 

b) Xét ∆ vuông ACE và ∆ vuông AKE ta có : 

AE chung 

CAE = BAE ( AE là phân giác CAB )

=> ∆ACE = ∆AKE ( ch-gn)

=> AC = AK = 3cm

Mà AK + KB = AC 

=> KB = 5 - 3 = 2cm

c ) Xét ∆ vuông KEB ta có :

KE < EB ( Quan hệ giữa cạnh huyền và cạnh góc vuông) 

Mà ∆ACE = ∆AKE (cmt)

=> CE = EK 

=> EC< EB 

d) Vì ∆ACE = ∆AKE (cmt)

=> AC = AK 

=> ∆ACK cân tại A 

Xét ∆ vuông ECD và ∆ vuông CKB ta có : 

CE = EK (cmt)

KEB = CED ( đối đỉnh) 

=> ∆ECD = ∆CKB (cgv -gn)

=> CD = KB ( tương ứng) 

Mà AC + CD = AD 

AK + KB = AB 

=> AD = AB 

=> ∆ABD cân tại A

Vì ∆ACK cân tại A (cmt)

=> ACK = \(\frac{180°\:-\:CaB}{2}\)

Vì ∆ABD cân tại A 

=> ADC = \(\frac{180°\:-\:CAB}{2}\)

=> ADC = ACK 

Mà 2 góc này ở vị trí đồng vị 

=> CK //DB