cho tam giác abc có ab=3cm ac=4cm bc=5m. chứng minh tam giác abc vuông. tính góc b, góc c
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm.
a) Tam giác ABC là tam giác gì?
b) AK vuông góc với BC tại K. Tính góc B, góc C, AK,BK,CK
c) Kẻ KE , KF vuông góc lần lượt với AB, AC. Chứng minh AK = EF và tam giác AEF đồng dạng với tam giác ACB
a) Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Cho tam giác ABC vuông tại A có AC=3cm, AB=4cm, BC=5cm. a)Chứng minh tam giác ABC vuông. Tính góc B và C b) Phân giác của góc A cắt BC tại D. Tính BD và CD.
a) Xét ΔABC có
\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)
\(\Leftrightarrow\widehat{B}=37^0\)
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)
mà BD+CD=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)
cho tam giác abc vuông tại a có ab=3cm ac=4cm a)tính độ dài cạnh bc b) tia phân giác góc b cắt ac tai e vẽ eh vuông góc với bc tai h.chứng minh rằng tam giác abe =tam giác hbe và ab=hb c)tia ba cắt tia he tại d .chứng minh rằng be vuông góc với cd d)kẻ đường thẳng d vuông góc với bc tại b,d cắt tia ca tại m.tia phân giác của góc m cắt bc tại k.chứng minh rằng mk song sonhg với dc
Cho tam giác ABC vuông tại A, AB= 3cm, AC= 4cm. Phân giác của góc B cắt AC tại D. Kẻ DE vuông góc BC tại E a. Tính BC b. Chứng minh tam giác ABD= tam giác EBD c. So sánh BD với BC+CD từ đó chứng minh BD+DA < BC+AC
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm
a. Tính độ dài BC
b. So sánh các góc của tam giác ABC
c. Vẽ đường phân giác BD của tam giác ABC (D thuộc AC). Vẽ DB vuông góc với BC tại E. Chứng minh tam giác ABD = tam giác EBD
d. Trên tia đối của tia AB, lấy điểm K sao cho AK = EC
Chứng minh góc BKC bằng góc BCK
e. Tia BD cắt KC tại I. Chứng minh IA = IE.
cho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBAcho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBA~ AbC, B tính độ dài BC và AH AbC, B tính độ dài BC và AH
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
Cho Tam giác ABC vuông góc tại A. AB=3cm và AC=4cm a) Tính BC b) Trên tia đối của của AB lấy I sao cho AB = AI. Chứng minh tam giác BIC cân c)Vẽ AN thuộc BC. N thuộc BC, AM vuông góc CI, M thuộc CI. Chứng minh tam giác ANC= tam giác AMC d) Chứng minh MN song song với BI
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔCAB vuông tại A và ΔCAI vuông tại A có
CA chung
AB=AI
Do đó: ΔCAB=ΔCAI
=>CB=CI
=>ΔCBI cân tại C
c: Ta có; ΔCAB=ΔCAI
=>\(\widehat{ACB}=\widehat{ACI}\)
Xét ΔCMA vuông tại M và ΔCNA vuông tại N có
CA chung
\(\widehat{MCA}=\widehat{NCA}\)
Do đó: ΔCMA=ΔCNA
d: Ta có: ΔCMA=ΔCNA
=>CM=CN
Xét ΔCIB có \(\dfrac{CM}{CI}=\dfrac{CN}{CB}\)
nên MN//IB
Cho ABC vuông tại A có AB = 3cm, AC = 4cm a) tính độ dài cạnh BC? b) vẽ phân giác BD (D thuộc AC) từ D vẽ DE vuông góc BC (E thuộc BC) chứng minh Tam giác ABD = tam giác EBD c) chứng minh BD + CD>2.DA
a: BC=căn 3^2+4^2=5cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔABD=ΔEBD
Cho tam giác ABC có AB = 5cm, AC = 3cm, BC = 4cm. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc AB
a. Chứng tỏ tam giác ABC vuông
b. Tính AK và BK
c. Chứng minh EC < EB
d. Gọi D là giao điểm của AC và EK. Chứng minh CK // BD
e. Tính BD
a) Ta có : AB2 = 52 = 25 cm
Mà AC2 + BC2 = 42 + 32 = 15 + 9 = 25cm
=> AB2 = AC2 + BC2
=> ∆ABC vuông tại C
b) Xét ∆ vuông ACE và ∆ vuông AKE ta có :
AE chung
CAE = BAE ( AE là phân giác CAB )
=> ∆ACE = ∆AKE ( ch-gn)
=> AC = AK = 3cm
Mà AK + KB = AC
=> KB = 5 - 3 = 2cm
c ) Xét ∆ vuông KEB ta có :
KE < EB ( Quan hệ giữa cạnh huyền và cạnh góc vuông)
Mà ∆ACE = ∆AKE (cmt)
=> CE = EK
=> EC< EB
d) Vì ∆ACE = ∆AKE (cmt)
=> AC = AK
=> ∆ACK cân tại A
Xét ∆ vuông ECD và ∆ vuông CKB ta có :
CE = EK (cmt)
KEB = CED ( đối đỉnh)
=> ∆ECD = ∆CKB (cgv -gn)
=> CD = KB ( tương ứng)
Mà AC + CD = AD
AK + KB = AB
=> AD = AB
=> ∆ABD cân tại A
Vì ∆ACK cân tại A (cmt)
=> ACK = \(\frac{180°\:-\:CaB}{2}\)
Vì ∆ABD cân tại A
=> ADC = \(\frac{180°\:-\:CAB}{2}\)
=> ADC = ACK
Mà 2 góc này ở vị trí đồng vị
=> CK //DB