tính:
\(\left(1000-1\right).\left(1000-2\right).\left(1000-3\right).....\left(1000-234567\right)\)
tính:
a)\(\left(1000-1^3\right).\left(1000-2^3\right).\left(1000-3^3\right).....\left(1000-50^3\right)\)
b)\(\frac{14^{16}.21^{32}.35^{48}}{10^{16}.16^{32}.7^{96}}\)
c)\(D=2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}\)
1.Tính C=\(\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)\left(1+\frac{1999}{3}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)\left(1+\frac{1000}{3}\right)...\left(1+\frac{1000}{1999}\right)}\)
\(C=\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{1999}\right)}\)=> \(C=\frac{\frac{2000.2001.2002....2999}{1.2.3...1000}}{\frac{1001.1002.1003....2999}{1.2.3...1999}}\)
=> \(C=\frac{\frac{2000.2001.2002....2999}{1.2.3...1000}}{\frac{\left(1001.1002.1003....1999\right).\left(2000.2001.2002...2999\right)}{\left(1.2.3...1000\right).\left(1001.1002...1999\right)}}\)
=> \(C=\frac{2000.2001.2002....2999}{1.2.3...1000}.\frac{\left(1.2.3...1000\right).\left(1001.1002...1999\right)}{\left(1001.1002.1003....1999\right).\left(2000.2001.2002...2999\right)}=1\)
Đáp số: C=1
tính G=\(\frac{\left(1+\frac{1015}{1}\right)\left(1+\frac{1015}{2}\right)\left(1+\frac{1015}{3}\right)...\left(1+\frac{1015}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)\left(1+\frac{1000}{3}\right)...\left(1+\frac{1000}{1015}\right)}\)
\(\left(1000-1^{ }3\right).\left(1000-2^{ }3\right).\left(1000-3^{ }3\right)....\left(1000-25^{ }3\right)\)
\(^{\left(-1\right)^2.\left(-1\right)^{ }3.\left(-1\right)^{ }4.......\left(-1\right)^{ }100}\)
ai trả lời nhanh nhất mk sẽ k cho 3 lần
\(Tính:\left(1000-1^3\right).\left(1000-2^3\right).\left(1000-3^3\right)...\left(1000-50^3\right)\)
\(A=\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)\left(1+\frac{1999}{3}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)\left(1+\frac{1000}{3}\right)...\left(1+\frac{1000}{1999}\right)}\)
hỏi a = ?
Tính: \(\left(1000-1^3\right).\left(1000-2^3\right).\left(1000-3^3\right)......\left(1000-50^3\right)=..........\)
Vì trong dãy trên sẽ có 1000-10\(^3\)=0
\(\Rightarrow\)(1000-1)(1000-2\(^3\))...(1000-50\(^3\))=0
Tính:
Ta có : 1000 - 13 = 1000 - 1000 = 0
Nên : (= 0
Vậy ...
Ta có: (1000 - 1^3) . (1000 - 2^3) . (1000 - 3^3) . ... . (1000 - 10^3) . ... . (1000 - 50^3)
= (1000 - 1^3) . (1000 - 2^3) . (1000 - 3^3) . ... . (1000 - 1000). ... . (1000 - 50^3)
= (1000 - 1^3) . (1000 - 2^3) . (1000 - 3^3) . ... . 0 . ... . (1000 - 50^3)
= 0
Tính : \(\left(1000-1^3\right).\left(1000-2^3\right).\left(1000-3^3\right).....\left(1000-50^3\right)=?\)
\(\left(1000-1^3\right).\left(1000-2^3\right).\left(1000-3^3\right)....\left(1000-50^3\right)\)
\(=\left(1000-1^3\right).\left(1000-2^3\right)...\left(1000-10^3\right)....\left(1000-50^3\right)\)
\(=\left(1000-1^3\right).\left(1000-2^3\right)...\left(1000-1000\right)....\left(1000-50^3\right)\)
\(=\left(1000-1^3\right).\left(1000-2^3\right)...0...\left(1000-50^3\right)\)
\(=0\)
Tính :
\(A=\left(1000-1^3\right).\left(1000-2^3\right).\left(1000-3^3\right).........\left(1000-50^3\right)\)
Vì 103 = 1000 nên :
( 1000 - 103 ) = 0
Số nào nhân với 0 cũng bằng 0
Vậy A = 0