Cho x,y,z là độ dài 3 cạnh của 1 tam giác .Tìm GTNN và GTLN của P=x/(y+z) + y/(x+z) + z/(x+y)
a) Cho x, y, z là 3 số dương. CMR có tam giác mà các cạnh của nó có độ dài là a, b, c với: a=x+y; b=y+z; c=z+x.
b) Cho a, b, c là các độ dài 3 cạnh của một tam giác. CMR có các số dương x, y, z sao cho: a=x+y; b=y+z; c=z+x.
a) Vì x,y,z>0 nên a,b,c>0 (1)
Ta có: a+b-c=x+y+y+z-z-x=2y>0
=> a+b>c. Tương tự ta có b+c>a, c+a>b (2)
Từ (1) và (2) => Tồn tại tam giác mà các cạnh của nó có độ dài 3 cạnh là a,b,c
b) Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có a+b>c hay x+y+y+z>z+x => y>0
Tương tự: z,x>0
Vậy có các số dương x,y,z tm
Cho x; y; z là độ dài ba cạnh của tam giác ABC . Biết : (x+y)(y+z)(z+x)=8xyz. CMR: tam giác ABC là tam giác đều .
Áp dụng BĐT AM-GM có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8\sqrt{x^2y^2z^2}=8xyz\)
Dấu "=" xảy ra khi x=y=z
\(\Rightarrow\) tam giác ABC là tam giác đều.
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=3 . Tìm GTNN và GTLN của biểu thức N = căn(x+y) + căn(y+z) + căn(x+z)
Cho x,y,z là độ dài 3 cạnh của 1 tam giác. CMR:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}{xyz}\ge9\)
cho a,b,c là độ dài các cạnh của một tam giác và x,y,z là độ dài các đường phân giác trong của tam giác đó.CMR:1/a+1/b+1/c<1/x+1/y+1/z
Tìm nghiệm nguyên :
x3+y3+z3-3xyz = x(y-z)2+z(x-y)2+y(z-x)2 (với x,y,z là độ dài 3 cạnh 1 tam giác)
Giang ho dại gái à !
cậu ghi không rõ nên tớ không biết
1. Cho a,b,c,d là độ dài 3 cạnh của tam giác ABC, chứng minh:
|a/b+b/c+c/a-a/c-c/b-b/a|<1
2. Cho các số a,b,c,d thoả mãn: a+b+c+d = 7 và a^2+b^2+c^2+d^2=13
Tìm gtln và gtnn của a.
3. Chứng minh rằng: |x+y+z| =< |x|+|y|+|z|
Cho x, y, z là những số thực thỏa mãn x+y+z=0 và -1≤x,y,z≤1. Tìm GTNN và GTLN của biểu thức P=x4+y6+z8
Cho x,y,z là độ dài 3 cạnh của tam giác. CMR
\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{x+y+z}{2xyz}\)
\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\)
\(\le\frac{1}{2\sqrt{x^2yz}}+\frac{1}{2\sqrt{y^2xz}}+\frac{1}{2\sqrt{z^2xy}}=\frac{\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}}{2\sqrt{xyz}}\)
\(=\frac{\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{2xyz}\le\frac{\frac{x+y+x+z+x+y}{2}}{2xyz}=\frac{x+y+z}{2xyz}\)
Dấu '=' xảy ra <=> x=y=z
\(\frac{1}{x^2+yz}\le\frac{1}{2\sqrt{x^2yz}}=\frac{\frac{1}{\sqrt{x}}}{2\sqrt{xyz}}=\frac{\sqrt{yz}}{2xyz}\)
Tương tự cộng vế với vế -> \(VT\le\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2xyz}\le VP\)
Dấu '=' xảy ra khi x=y=z
1/(x^2+yz) <= 1/(2 sqrt(x^2*yz)) = [1/sqrt(x)]/2sqrt(xyz) = sqrt(yz)/2xyz
Làm tương tự với các cái còn lại, cộng vế với vế là dc [sqrt(xy)+sqrt(yz)+sqrt(xz)]/2xyz <= VP
Dấu = xảy ra khi x=y=z