GTNN và GTLN là giá trị lớn nhất và giá trị nhỏ nhất nhé space ship
GTNN và GTLN là giá trị lớn nhất và giá trị nhỏ nhất nhé space ship
Cho x; y; z là độ dài ba cạnh của tam giác ABC . Biết : (x+y)(y+z)(z+x)=8xyz. CMR: tam giác ABC là tam giác đều .
cho a,b,c là độ dài các cạnh của một tam giác và x,y,z là độ dài các đường phân giác trong của tam giác đó.CMR:1/a+1/b+1/c<1/x+1/y+1/z
Tìm nghiệm nguyên :
x3+y3+z3-3xyz = x(y-z)2+z(x-y)2+y(z-x)2 (với x,y,z là độ dài 3 cạnh 1 tam giác)
Cho x, y, z là những số thực thỏa mãn x+y+z=0 và -1≤x,y,z≤1. Tìm GTNN và GTLN của biểu thức P=x4+y6+z8
Cho x,y,z là độ dài 3 cạnh của tam giác. CMR
\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{x+y+z}{2xyz}\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác và x,y,z là độ dài các đường phân giác trong của các góc đối diện với các cạnh đó.
CMR: 1/x + 1/y + 1/z > 1/a + 1/b + 1/c
cho x,y,z là độ dài 3 cạnh của tam giác.cmr (x+y+z)(1/x+1/y+1/z)+(3(x-y)(y-z)(z-x))/xyz>=9
Mình cần gấp các bạn giúp mình với
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Tìm tất cả các bộ ba ( x, y, z) sao cho x, y, z là các số nguyên và x, y, z là độ dài ba cạnh của tam giác vuông có số đo diện tích bằng số đo chu vi ( không kể đơn vị đo)