Cho tam giác ABC có AD là đường cao và CE cắt nhau tại H .Chứng minh BH vuông góc AC
Cho tam giác ABC (AB<AC) có ba góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: △AFH ∼ △ADB.
b) Chứng minh: BH.HE = CH.HF.
c) Gọi I là trung điểm của BC, kẻ đường thẳng qua H vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường thẳng AC tại N. Chứng minh: MH = HN
a) Xét ΔAFH và ΔADB có
\(\widehat{AFH}=\widehat{ADB}\left(=90^0\right)\)
\(\widehat{BAD}\) chung
Do đó: ΔAFH∼ΔADB(g-g)
b) Xét ΔBHF và ΔCHE có
\(\widehat{BFH}=\widehat{CEH}\left(=90^0\right)\)
\(\widehat{BHF}=\widehat{CHE}\)(đối đỉnh)
Do đó: ΔBHF∼ΔCHE(g-g)
\(\Rightarrow\frac{BH}{CH}=\frac{HF}{HE}=k\)(tỉ số đồng dạng)
hay \(BH\cdot HE=CH\cdot HF\)(đpcm)
BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BD
b) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BD
BÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘ
BÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG ĐIỂM CÁC CẠNH ĐỐI DIỆN THÌ TỨ GIÁC ĐÓ LÀ HÌNH BÌNH HÀNH
BÀI 4: CHO TAM GIÁC ABC VUÔNG TẠI A ( AC > AB), ĐƯỜNG CAO AH. TRÊN TIA HC LẤY HD = HA, ĐƯỜNG VUÔNG GÓC VỚI BC TẠI D CẮT AC TẠI E.
a) CHỨNG MINH AE = AB
b) GỌI M LÀ TRUNG ĐIỂM BE . TÍNH GÓC AHM
BÀI 5: TỨ GIÁC ABCD CÓ CÓ GÓC A = GÓC B =90 ĐỘ VÀ AC = BD.
a) ABCD CÓ PHẢI LÀ HÌNH CHỮ NHẬT KHÔNG? C/M
b) LẤY ĐIỂM M NẰM GIỮA A,C. VẼ MK VUÔNG GÓC AB TẠI K , MH VUÔNG GÓC AD TẠI H. CHỨNG MINH HK // BD
C) TIA MH CẮT BC Ở E, TIA KM CẮT CD TẠI F. MD CẮT HF Ở I, MB CẮT KE TẠI J/ CHỨNG MINH HK + EF = 2IJ
đc có tí điểm bắt lm 5 câu dài ko ai muốn lm
Cho tam giác ABC nhọn, AB<AC. Các đường cao AE, BF cắt nhau tại H. Gọi M là tđ của BC. Qua B vẽ đường thẳng a vuông góc với HM, a cắt AB, AC tại I và K.
a, Chứng minh tam giác ABC đồng dạng EFC.
b, Qua C kẻ đường thẳng song song với IK. b cắt AH, AB tại N,D. Chứng minh NC=ND và HI=HK
c, Gọi G là giao điểm của CH và AB. Chứng minh AH/HE+BH/HF+CH/HG>6
BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh: Tam giác ABM = tam giác ACM.
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.
Chứng minh: BH = CK.
c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.
Chứng minh: Tam giác IBM cân.
BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.
a) Tính độ dài cạnh AC.
b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.
Chứng minh: DC = DF.
c) Chứng minh: AE song song FC. ( AE // FC )
BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: Tam giác ABD = tam giác ACE.
b) Chứng minh: Tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.
Chứng minh: ECB^ = DKC^.
#helpme
#mainopbai
Bài 3
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC( vì tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)
b) Có tam giác ABD= tam giác ACE( theo câu a)
=> AE=AD ( 2 cạnh tương ứng)
=> Tam giác AED cân tại A
c) Xét các tam giác vuông AEH và ADH có
Cạnh huyền AH chung
AE=AD
=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)
=>HE=HD
Ta có AE=AD và HE=HD hay AH là đường trung trực của ED
d) Ta có AB=AC, AE=AD
=>AB-AE=AC-AD
=>EB=DC
Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có
BD=DK
EB=Dc
=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)
=> Góc ECB= góc DEC ( 2 góc tương ứng)
Bài 1:
Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
BM=MC(gt)
AM cạnh chung
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) Xét hai tam giác vuông MBH và MCK có:
BM=MC(gt)
góc ABC=góc ACB (tam giác ABC cân tại A)
Suy ra tam giác MBH= tam giác MCK (ch-gn)
Suy ra BH=CK
c) MK vuông góc AC (gt)
BP vuông góc AC (gt)
Suy ra MK sông song BD
Suy ra góc B1= góc M2 (đồng vị)
Mà M1=M2(Tam giác HBM= tam giác KCM)
Suy ra góc B1= góc M1
Suy ra tam giác IBM cân
xong bài 1 đẻ bài 2 mình nghĩ tiếp
2) mình làm câu a thôi nha
a) Tam giác ABC vuông tại A
Suy ra AB^2+AC^2=BC^2
AC^2=BC^2-AB^2=5^2-4^2=3^2
Suy ra AC=3 cm
Bài 1: Cho tam giác ABC vuông tại A và có đường phân giác BE ( E € AC). Kẻ ED vuông góc BC ( D € BC)
a) CMR: Tam giác ABE = tam giác DBE
b) CMR: BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao của AB và DE. C/M AD song song FC
Bài 2: Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) chứng minh: AD = DH
b) so sánh độ dài cạnh AD và DC
c) chứng minh tam giác KBC là tam giác cân
Mình kẻ hình đc rồi... nhưng hôg zải đc... zúp mình vs
bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha
Bài 1:
a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)
=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)
b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD
c) xét tam giác AEF và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)
=> tam giác AEF = tam giác DEC ( trường hợp g.c.g ) => AE = DC (1)
mặt khác, AB = BD ( c/m câu b) (2) => tam giác ABD cân tại B => góc BDA = góc B :2 (3)
từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2 (4)
từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC
Bài 2:
a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD = tam giác HBD => AD = DH ( cặp cạnh tương ứng)
b) do AD = DH ( c/m câu a) (1)
xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên) (2)
từ (1) và (2) => AD < DC
c) xét tam giác ADK và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)
=> tam giác ADK = tam giác HDC ( trường hợp g.c.g ) => AK = HC (3)
mặt khác, AB = BH ( do tam giác ABD = tam giác HBD) (4)
từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B
Xong rồi nha :)
Cho tam giác ABC, có góc A = 120 độ , gọi o là giao điểm các dường phân giác AD và CE . Đường phân giác góc người tại đình B của tam giác ABC cắt đường thẳng AC tại F . Chứng minh rằng :
a) góc BDF = góc ADF
b)Ba điểm D,E,F thẳng hàng.
Cho tam giác ABC, trực tâm H . Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở D. Gọi O là trung điểm AD, M là trung điểm BC. Chứng minh
a, O là giao điểm các đường trung trực của tam giác ABC
b, OM=1/2AH
Bài 9 : Cho tam giác ABC có 3 góc nhọn ( AB<AC) . Vẽ 2 đường cao BE và CF của tam giác ABC cắt nhau tại H .Đường tròn tạm O , đường kính CH cắt BC tại K . Các tiếp tuyến tại E và C của (O) cắt nhau tại M . Chứng minh :
1/Tứ giác OEMC , BFEC nội tiếp được
2/HF.HC=HB.HE
3/3 điểm A,H,K thẳng hàng và I,O,M thẳng hàng
4/ 5 điểm E,F,K,I,O cùng thuộc 1 đường tròn
5/Kẻ tiếp tuyến BT đến O ( T là tiếp điểm , T thuộc cung nhỏ KC ) ,FT cắt (O) tại G , EG cắt AB tại S .Chứng minh : tứ giác SBKT nội tiếp
6/ Chứng tỏ : 3 đường thẳng BM,FC,AT đồng quy tại 1 điểm
Ai giúp mk vs
Cho tam giác ABC. Đường cao BD,CE cắt nhau tại H. Đường vuông góc với AB taijB cắt đừng vuông góc với AC tại C ở k. M là trung điểm của BC. Chứng minh H,M,K thẳng hàng
Nối H với M , K với M
có : BD vuông góc với AC ( BD là đường cao )
CK vuông góc với AC ( gt)
=> BD // CK ( từ vuông góc đến //)
CÓ CE vuông góc với AB ( CE là đường cao )
BK vuông góc với AB ( gt)
=> CE // BK ( từ vuông góc đến //)
Xét tam giác BHC và tam giác CKB có
góc HBC = góc KCB( 2 góc so le trong do BD // CK )
BC chung
góc HCB = góc KBC ( 2 góc so le trong do CE // BK )
=> tam giác BHC = tam giác CKB ( g-c-g)
=> BH = CK( 2 cạnh tương ứng )
Xét tam giác BHM và tam giác CKMcó
BH = CK ( cmt)
góc HBM = góc KCM (2 góc so le trong do BD // CK )
BM = CM ( M là trung điểm của BC )
=> tam giác BHM = tam giác CKM (c-g-c)
=> góc BMH = góc CMK ( 2 góc tương ứng )
mà góc BMH + góc HMC =180 độ ( 2 góc kề bù)
=> góc CMK + góc HMC =180 độ
hay góc HMK = 180 độ
=> H,M,K thẳng hàng
vậy H,M,K thẳng hàng
Cho tam giác ABC cân tại A. Kẻ BD vuông góc AC (D thuộc AC ), CE vuông góc AB ( E thuộc AB ). BD và CE cắt nhau tại H
a) Chứng minh tam giác BEC và tam giác CDB
b) Chứng minh tam giác BHC là tam giác cân
c) Gọi M là giao điểm của AH và BC. Chứng minh AM là đường trung trực của BC
P/s câu a và b với vẽ hình mình đã biết làm rồi còn câu c mình bí.
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó