so sánh: A=(3+1)(32+1)(34+1)(38+1)(316+1)
với B=332-1
bằng 2 cách
So sánh :
a) A = 2005.2001 và B = 20062
b) B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) và B = 232
c) C = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1) và B = 332 - 1
a) Ta có : 2005.2007 = (2006 - 1)(2006 + 1) = 20062 - 12 = 20062 - 1 ( cái khúc này sửa : 2005.2001 thành 2005.2007)
Mà B = 20062
=> 20062 - 1 < 20062
=> A < B
b) Ta có : B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (24 - 1)(24 + 1)(28 + 1)(216 + 1)
B = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1
Mà C = 232
=> B < C
c) Tương tự như câu b
So sánh:
a) A=2005.2007 B=20062
b)(2+1)(22+1)(24+1)(28+1)(216+1) B=232
c)(3+1)(32+1)(34+1)(38+1)(316+1) B=332-1
So sáng A và B:
a)A=(3+1)(32+1)(34+1)(38+1)(316+1) và B=332-1
b)A=2011.2013 và B=20122
a) \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)< 3^{32}-1=B\)
b) \(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2=B\)
a) Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào giá trị của biến y:
A = ( y + 1 ) 3 - ( y - 1 ) 3 - 6(y - 1)(y + 1).
b) So sánh M = 2.(3 + 1)( 3 2 +1)(34 + 1)...( 3 32 + 1) và N = 3 64 .
Tính nhanh:
(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)
ONLINE CHỜ GẤP Ạ !!! THANKS RẤT NHÌU
\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}.\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)=\dfrac{3^{32}}{2}-\dfrac{1}{2}\)
\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{3^{32}-1}{2}\)
Tính nhanh giá trị biểu thức sau:
4.(32 + 1)(34 + 1)(38 + 1)(316 + 1)
\(4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\dfrac{1}{2}\left(3^{16}-1\right)\cdot\left(3^{16}+1\right)\)
\(=\dfrac{1}{2}\left(3^{32}-1\right)\)
So sánh tổng S= 1/31+1/32+1/33+1/34+1/35+1/36+1/37+1/38+1/39+1/40 với 1/4
Ta có: \(\dfrac{1}{4}=\dfrac{10}{40}=\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}\)
Mà \(\dfrac{1}{31}>\dfrac{1}{40}\)
\(\dfrac{1}{32}>\dfrac{1}{40}\)
\(\dfrac{1}{33}>\dfrac{1}{40}\)
\(\dfrac{1}{34}>\dfrac{1}{40}\)
\(\dfrac{1}{35}>\dfrac{1}{40}\)
\(\dfrac{1}{36}>\dfrac{1}{40}\)
\(\dfrac{1}{37}>\dfrac{1}{40}\)
\(\dfrac{1}{38}>\dfrac{1}{40}\)
\(\dfrac{1}{39}>\dfrac{1}{40}\)
\(\Rightarrow\) \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{39}+\dfrac{1}{40}>\dfrac{10}{40}=\dfrac{1}{4}\)
Vậy \(S>\dfrac{1}{4}\)
so sánh hai số bằng cách vận dụng hằng đẳng thức:
A=4(32+1)(34+1)...(364+1) và B=3128-1
cho tổng a=1/3+2/32+3/33+4/34+.....+2022/32022.So sánh với 3/4
cho biểu thức A=(1/1.2+1/2.3+1/3.4+1/4.5+........+ 1/2016.2017): 2 Hãy so sánh A với 1/2
Cho biểu thức B= 1/31+1/32+1/33+1/34+........+1/60. Hãy chứng tỏ 3/5<B<4/5
\(A=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right):2\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right):2\)
\(=\left(1-\frac{1}{2017}\right):2\)\(< \)\(\frac{1}{2}\) (Do 1 - 1/2017 < 1)