cmr (a^6n + a^6m) chia hết cho 7 thì a chia hết cho 7
1 . CMR nếu [a,2014]=1 thì a4-1 chia hết cho 240
2. một số có 6n chữ số chia hết cho 7 . CMR nếu chuyển chữ số tận cùng của số đó lên đầu thì được 1 số chia hết cho 7
Giả sử tồn tại 1 số nguyên a chia hết cho 7, m,n là số tự nhiên thỏa mãn a6n+a6m không chia hết cho 7 (*)
a chia hết cho 7, ta đặt a=7k với k\(\in\)N*
\(a^{6m}+a^{6n}=\left(7k\right)^{6m}+\left(7k\right)^{6n}=7^{6m}.k^{6m}+7^{6n}.k^{6n}\)luôn chia hết cho 7(tính chất chia hết của 1 tổng)
Trái với giả sử đã đưa ra ở (*)
Vậy luôn tồn tại 1 nguyên a chia hết cho 7, m,n là số tự nhiên thỏa mãn a6n+a6m chia hết cho 7 (đpcm)
Như Ngọc làm, chứng minh phản chứng!
Giả sử tồn tại một số a là nguyên , m,n là số tự nhiên và a chia hết cho 7 sao cho \(a^{6n}+a^{6m}\) không chia hết cho 7
Khi đó đặt a = 7k (k thuộc N*)
\(a^{6m}+a^{6n}=\left(7k\right)^{6m}+\left(7k\right)^{6n}=7^{6m}.k^{6m}+7^{6n}.k^{6n}\)luôn chia hết cho 7 (vô lí)
Vậy điều giả sử sai. Ta có đpcm.
1)Cho các số nguyên a,b,c thỏa mãn a+b+c=0.
CMR
a)a3+b3+c3 chia hất cho 3abc
b)a5+b5+c5 chia hết cho 5abc
2)CMR a2+b2chia hết cho 3 thì a và b chia hết cho 3
CMR a2+b2chia hết cho 7 thì a,b chia hết cho 7
3)CMR
a)A=9n3+36n2+48n+5 khoongchia hết cho 343
b)B=4n3+6n2+3n+38 không chia hết cho 125
Cho a, b thuộc Z. CMR:
a) Nếu 2a+ b chia hết cho 13 và 5a -4b chia hết cho 13. CMR a-6b chia hết cho 13.
b) Nếu a0b chia hết cho 7 thì a+4b chia hết cho 7.
c) Nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11.
Các bạn giúp mk vs!!!
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
DK: a,b thuoc N, a > 0
\(\overline{a0b}=100a+b⋮7\)
\(\Rightarrow4.\left(100a+b\right)⋮7\)
\(\Rightarrow400a+4b⋮7\)
\(\Rightarrow a+4b⋮7\text{ vi }399a⋮7\)
\(\)
Ta co: \(3a+4b⋮11\Rightarrow7.\left(3a+4b\right)⋮11\)
\(\Rightarrow21a+28b⋮11\)
\(\text{ma }21a+28b+a+5b=22a+33b⋮11\)
\(\Rightarrow a+5b⋮11\text{ vi }21a+28b⋮11\)
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
CMR:(a+2b) chia hết cho 7 thì abb chia hết cho 7
\(\overline{abb}=100xa+11xb=98xa+7xb+2x\left(a+2xb\right)\)
Ta có
\(98xa+7xb⋮7\)
\(a+2xb⋮7\Rightarrow2\left(a+2xb\right)⋮7\)
\(\Rightarrow\overline{abb}⋮7\)
CMR Nếu a-2b chia hết cho 7 thì a-9b chia hết cho 7