a^2 - 2a +3 chia hết cho a -1
a,(a+11) chia hết cho(a+3)
b,(a-3) chia hết cho(a-14)
c,(2a+27) chia hết cho(2a+1)
d,(5a+28) chia hết cho(a+2)
e,(3a+15)chia hết cho(3a-1)
e) \(3a+15⋮3a-1\)
=> \(3a-1+16⋮3a-1\)
Mà \(3a-1⋮3a-1\)
=> \(16⋮3a-1\)
.............
a) \(a+11⋮a+3\)
\(\Rightarrow\left(a+3\right)+8⋮a+3\)
Mà \(a+3⋮a+3\)
=> \(8⋮a+3\)
=> \(a+3\in\text{Ư}\left(8\right)=\left\{\text{ }\pm1;\pm2\pm4;\pm8\right\}\)
=> \(a\in\left\{-4;-2;-5;-1;-7;1;-11;5\right\}\)
b) \(a-3⋮a-14\)
=> \(\left(a-14\right)+11⋮a-14\)
Mà \(a-14⋮a-14\)
=> \(11⋮a-14\)
Đến đây bạn tự làm tiếp nhé!
Chứng minh:1.a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
1) a2(a+1)+2a(a+1)
=(a+1)(a2+2a)
=(a+1)(a2+2a+1-1)
=(a+1)[(a+1)2-12]
=(a+1)(a+1-1)(a+1+1)
=a(a+1)(a+2)
Trong 3 số nguyên liên tiếp luôn có một số chia hết cho 2, một số chia hết cho 3.
=> a(a+1)(a+2)\(⋮\)2.3=6
=> a2(a+1)+2a(a+1)\(⋮\)6 (a thuộc Z)
Chứng minh rằng :
1.(2n-3)2-9 chia hết cho 4 với mọi số nguyên n
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
3.a4-2a3-a2+2a chia hết cho 24 với a là số nguyên
4.n3-n chia hết cho 6 với mọi số nguyên n
CMR
a. a^2*(a+1) +2a *(a+1) chia hết cho 6 với a thuộc Z
b. a*(2a-3) -2a*(a-1) chia hết cho 5 với a thuộc Z
c. chứng minh rằng với mọi số tự nhiên lẻ n :
1.n^2+4n+8 chia hết cho 8
2. n^3 +3n^2 -n-3 chia hết cho 48
ai trả lời nhanh mình tick nha
a)Ta có:a2(a+1)+2a(a+1)=(a2+2a)(a+1)
=a(a+1)(a+2)
Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số \(⋮2\);1 thừa số \(⋮3\)
mà (2;3)=1
=>a(a+1)(a+2)\(⋮2.3\)=6 hay a2(a+1)+2a(a+1)\(⋮6\)
b)Ta có:
a(2a-3)-2a(a-1)=2a2-3a-2a2+2a=-a
cái này có phải đề sai k vậy bạn
Tìm a thuộc Z, biết:
a)2a-3 chia hết cho a+5
b)2a+1 chia hết cho a-2
Giúp mình với nha mình đang gấp lắm luôn:
Tìm a:
a 25 chia hết cho a-3
b, 50 chia hết cho 2a-3
c, a+17 chia hết cho a-3
d, 2a + 25chia hết cho 2a-3
e, 6a + 37 chia hết cho 2a+1
Bài a, và b, giống nhau nên mình sẽ là 1 bài rồi bạn làm tương tự nha
Ta có: 25 chia hết cho a-3
=> (a-3)€ U(25)= {1,-1,-5,5,-25,25}
=> a-3 = 1. => a=4
Tương tự
ks nha. Chờ tui síu rooid làm mấy bài còn lại
Câi c, đây
Ta có : a+17 chia hết a-3
=> \(\frac{a+17}{a-3} = \frac{a-3+20}{a-3}\)
= \(\frac{a-3}{a-3} + \frac{20}{a-3}\)
=\(1 + \frac{20}{a-3}\)
Để phân số này nguyên thì
(a-3) € U(20) =(-1,1,-2,2,-4,4,-5,5,-10,10,20,-20}
Bạn tự suy ra như bài b nhé
Câu d,
Ta có: 2a +25 chia hêta 2a-3
=> \(\frac{2a+25}{2a-3} = \frac{ 2a -3+28}{2a-3}\)
= \(\frac{2a-3}{2a-3} + \frac{28}{2a-3}\)
Tương tự như trên
(2a-3) € U(28{......}
Chứng minh rằng:
1) (2n – 3)^2 – 9 chia hết cho 4 với mọi số nguyên n
2) a^4 - 2a^3 – a^2 + 2a chia hết cho 24 với a là số nguyên
\(1,\left(2n-3\right)^2-9=\left(2n-3-3\right)\left(2n-3+3\right)=\left(2n-6\right)2n=4n\left(n-3\right)⋮4\)
\(2,=a^3\left(a-2\right)-a\left(a-2\right)=\left(a-2\right)\left(a^3-a\right)=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\)
Vì đây là tích 4 số nguyên lt nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
(3a+1).(3a+2)chia hết cho 2 với mọi a
(4a+1).(4a +2).(4a+3)chia hết cho 3 với mọi a
(2a)mũ 2020 chia hết cho 16 với mọi a
(3a+1).(3a+2)
Ta có: nếu a là số lẻ thì 3a+1 là số chẵn
⇒(3a+1).(3a+2)⋮2 (thỏa mãn)
Ta có: nếu a là số chẵn thì 3a+2 là số chẵn
⇒(3a+1).(3a+2)⋮2 (thỏa mãn)
Vậy với mọi a thì (3a+1).(3a+2)⋮2
(2a)2020=(2a)4.(2a)2016=16.a4.(2a)2016
Vì 16⋮16 nên (2a)2020⋮16
a) CMR A= 1 + 2 + 2^2 + 2^3 +....+ 2^39 là bội của 15.
b) CMR B= 2 + 2^2 + 2^3 +...+ 2^2004 chia hết cho 30.
c) CMR tổng của 3 số lẻ liên tiếp không chia hết cho 6.
d) CMR A= 2a + 4 + 2a + 6 + 2a +8 chia hết cho 28.
a) A = 1 + 2 + 22 + 23 + ...... + 239
= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + .....+ (236 + 237 + 238 + 239)
= (1 + 2 + 22 + 23) + 24(1 + 2 + 22 + 23) + .......+ 236(1 + 2 + 22 + 23)
= 15 (1 + 24 + ...... + 236 ) \(⋮15\)
Vậy A là bội của 15
b) B = 2 + 22 + 23 + ...... + 22004
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ...... + (22001 + 22002 + 22003 + 22004)
= 2(1 + 2 + 23 + 24) + 25(1 + 2 + 22 + 23) + ....... + 22001(1 + 2 + 22 +23)
= 15 (2 + 25 + ..... + 22001) \(⋮15\)
Ta thấy B \(⋮2\)(vì các số hạng của B đều chia hết cho 2)
mà (2; 15) = 1
nên B \(⋮30\)
c) Gọi 3 số lẻ liên tiếp là: 2k+1; 2k+3; 2k+5
Ta có: 2k+1 + 2k+3 + 2k+5 = 6k + 9
Ta thấy 6k chia hết cho 6 nhưng 9 ko chia hết cho 6
nên 6k + 9 ko chia hết cho 6
Vậy tổng của 3 số lẻ liên tiếp ko chia hết cho 6
a) a2 ( a + 1 ) + 2a ( a + 1) chia hết cho 6 với a ∈ Z.
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với a ∈Z.
c) x2 + 2x + 2 > 0 với mọi x
mik lm mẫu câu a nhé
a, \(=\left(a+1\right).\left(a^2+2a\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)tích 3 stn liên tiếp chia hết cho 6