Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm mai phương
Xem chi tiết
Vũ Hồng Nhung
Xem chi tiết
Bùi Hồng Thắm
13 tháng 11 2015 lúc 15:20

TẤT CẢ ĐỀU CÓ TRONG  " câu hỏi tương tự "

Doan khue
Xem chi tiết
Trần Long
Xem chi tiết
Akai Haruma
6 tháng 1 2023 lúc 19:22

4 không chia hết cho 49. Bạn xem lại đề xem lỗi ở đâu.

Lã Phương Linh
Xem chi tiết
Lưu Nguyễn Hà An
11 tháng 8 2023 lúc 14:19

THAM SỜ KHẢO SỜ NHA;

2x + 3y chia hết cho 7

=> 3(2x+3y) chia hết cho 7 

hay 6x+ 9y chia hết cho 7        (1)

3x + y chia hết cho 7 

=> 2(3x+y) chia hết cho 7 

hay 6x + 2y chia hết cho 7        

xét hiệu

=> 6x + 9y - (6x + 2y) 

= 6x -+ 9y - 6x - 2y 

= 7y chia hết cho 7            (2) 

từ 1 và 2 

=> 6x + 2y chia hết cho 7 

hay 3x + y chia hết cho 7 (đpcm)

Nguyễn Ngọc Ánh
Xem chi tiết
FL.Hermit
15 tháng 8 2020 lúc 16:39

a)

CM chiều xuôi.

Có:     \(2x+3y⋮17.\)    CMR:     \(9x+5y⋮17\)

\(\Rightarrow9\left(2x+3y\right)⋮17\)

\(\Rightarrow18x+27y⋮17\)

\(\Rightarrow18x+10y+17y⋮17\)

MÀ    \(17y⋮17\)

\(\Rightarrow2\left(9x+5y\right)⋮17\)

\(\Rightarrow9x+5y⋮17\left(đpcm\right)\)     do 2 ko chia hết cho 17

CM chiều đảo: 

Có:    \(9x+5y⋮17\)     . CMR:     \(2x+3y⋮17\)

=>   \(18x+10y⋮17\)

=>   \(18x+27y-17y⋮17\)

=>   \(18x+27y⋮17\)    do     \(17y⋮17\)

=>    \(2x+3y⋮17\)     do 9 ko chia hết cho 17.

VẬY QUA CM ĐẢO VÀ XUÔI TA CÓ ĐPCM.

**** ĐỀ BÀI THIẾU NGHIÊM TRỌNG LÀ    \(x;y\inℤ\)     nhé !!!!

Khách vãng lai đã xóa

a) Ta phải chứng minh: 2.x + 3.y chia hết cho 17 thì 9.x + 5.y chia hết cho 17

Ta có 4.(2x + 3y) + (9x+ 5y) = 17x + 17y chia hết cho 17

Do vậy : 2x + 3y chia hết cho 17; 4.(2x + 3y) chia hết cho 17; 9x + 5y chia hết cho 17

Ngược lại : Ta có 4.(2x + 3y) chia hết cho 17 mà (4;17) = 1 => 2x + 3y chia hết cho 17. 

b) Gọi số cần tìm là a. Theo đề bài ra ta có a:9 dư 5 => 2a - 1 chia hết cho 9

a :7 dư 4 => 2a - 1 chia hết cho 7; a: 5 dư 3 => 2a - 1 chia hết cho 5

Vì 2a - 1 chia hết cho 9,7,5 và a nhỏ nhất => 2a - 1 thuộc BCNN(9;5;7)

9 = 32; 5 = 5; 7 = 7 => BCNN(9;5;7) = 32.5.7 = 315. Ta có: 2a - 1 = 135 

2a = 315 + 1 => 2a = 316 => a = 316 : 2 = 158

=> Số thỏa mãn yêu cầu đề bài mà ta cần tìm là 158. 

Khách vãng lai đã xóa
Xyz OLM
15 tháng 8 2020 lúc 16:46

a) Ta có : 2x + 3y \(⋮\)17

=> 9(2x + 3y)  \(⋮\)17

=> 18x + 27y  \(⋮\)17

=> 18x + 10y + 17y  \(⋮\)17

=> 2(9x + 5y) + 17y  \(⋮\)17

Vì 17y  \(⋮\)17

=> 2(9x + 5y)  \(⋮\)17

=> 9x + 5y  \(⋮\)17 (Vì 2 không chia hết cho 17) (đpcm)

b) Gọi số cần tìm là a

Ta có : \(\hept{\begin{cases}a:5\text{ dư 3}\\a:7\text{ dư 4}\end{cases}}\Rightarrow\hept{\begin{cases}2a:5\text{ dư 1}\\2a:7\text{ dư 1}\end{cases}}\Rightarrow\hept{\begin{cases}\left(2a-1\right)⋮5\\\left(2a-1\right)⋮7\end{cases}}\Rightarrow2a-1\in BC\left(5;7\right)\)

Vì a là số nhỏ nhất có thể => 2a - 1 nhỏ nhất có thể

=> 2a - 1 = BCNN(5;7)

Vì ƯCLN(5;7) = 1 

=> BCNN(5;7) = 5.7 = 35

=> 2a - 1 = 35

=> 2a = 36

=> a = 18

Vậy số cần tìm là 18

Khách vãng lai đã xóa
Lê Thanh Hà
Xem chi tiết
Nguyễn Ngọc Anh Minh
22 tháng 10 2019 lúc 8:03

a/ 

5x+7y=11(x+y)-(6x+4y)=11(x+y)-2(3x+2y)

11(x+y) chia hết cho 11; 3x+2y chia hết cho 11 => 2(3x+2y) chia hết cho 11

=> 5x+7y chia hết cho 11

b/

5x+y=7(x+y)-(2x+6y)=7(x+y)-2(x+3y)

7(x+y) chia hết cho 7; x+3y chia hết cho 7 => 2(x+3y) chia hết cho 7

=> 5x+y chia hết cho 7

Khách vãng lai đã xóa
Nguyễn Quý
Xem chi tiết
Akai Haruma
29 tháng 12 2018 lúc 14:57

Lời giải:

\(\left\{\begin{matrix} 3x-y+1\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 3(3x-y+1)\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\)

\(\Rightarrow 3(3x-y+1)+(2x+3y-1)\vdots 7\)

\(\Rightarrow 11x+2\vdots 7\)

\(\Rightarrow 11(x-3)+35\vdots 7\Rightarrow 11(x-3)\vdots 7\Rightarrow x-3\vdots 7\)

\(\Rightarrow x\) chia 7 dư $3$

Đặt $x=7k+3$ thì:
\(3x-y+1\vdots 7\)

\(\Rightarrow 3(7k+3)-y+1\vdots 7\)

\(\Rightarrow 21k+7+3-y\vdots 7\Rightarrow 3-y\vdots 7\)

\(\Rightarrow y-3\vdots 7\) hay $y$ chia $7$ dư $3$

Vậy $x,y$ chia $7$ đều dư $3$

nguyễn văn công
Xem chi tiết
soyeon_Tiểu bàng giải
16 tháng 6 2016 lúc 15:02

Đặt A = 2x + 3y , B = 9x + 5y

Xét biểu thức: 9A - 2B = 9.(2x + 3y) - 2.(9x + 5y)

                                 = (18x + 27y) - (18x + 10y)

                                 = 18x + 27y - 18x - 10y

                                 = 17y

Do A chia hết cho 17 => 9A chia hết cho 17

Mà 17y chia hết cho 17 => 2B chia hết cho 17

Mà (2,17)=1 => B chia hết cho 17

Chứng tỏ 2x+3y chia hết cho 9x=5y khi và chỉ khi 9x+5y chia hết cho 17