tim so nguyen a nho nhat thoa man biet
25.(\(\frac{1}{2}\))2a < (\(\frac{1}{32}\))12
So nguyen a nho nhat thoa man: 2.(\(\frac{1}{2}\))a < (\(\frac{1}{4}\))20
Sẽ được là:(2/2)a<1/420
1/a<1/420
Từ khúc đó pn tự làm nha
1. Cho a,b,c,d la cac so nguyen thoa man \(a^2=b^2+c^2+d^2\)
chung minh rang a.b.c.d + 2015 viet duoc duoi dang hieu cua 2 so chinh phuong.
2. Cho a,b la cac so duong thoa man dieu kien a+b=1. tim gia tri nho nhat cua bieu thuc
\(P=\frac{2+a}{\sqrt{2-a}}+\frac{2+b}{\sqrt{2-b}}\)
Cho a,b,c la cac so duong thoa man a+b+c=9.Tim gia tri nho nhat cua bieu thuc:
\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
tim số nguyen duong nho nhat thoa man mot phan 2 so do la so chinh phuong,mot phan 3 so do la luy thua bac 3 cua 1 so nguyen, mot phan 5 so do la luy thua bac 5 cua 1 so nguyen
so nguyen a nho nhat thoa man 2.1/2 mu a<1/4 mu 20
cho a,b la cac so duong thoa man : a+b=1
Tim gia tri nho nhat cua bieu thuc: T= \(\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
\(T_{min}=\frac{2715}{8}\) tại \(a=b=\frac{1}{2}\)
\(T=\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
\(=\frac{19}{ab}+\frac{6}{a^2+b^2}+304\left(a^4+b^4+\frac{1}{16}+\frac{1}{16}\right)+48\left(a^4+\frac{1}{16}\right)+48\left(b^4+\frac{1}{16}\right)+1659\left(a^4+b^4\right)-44\)
\(\ge\frac{19}{ab}+\frac{6}{a^2+b^2}+304ab+24\left(a^2+b^2\right)+1659.\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}-44\)
\(=\left(\frac{19}{ab}+304ab\right)+\left(\frac{6}{a^2+b^2}+24\left(a^2+b^2\right)\right)+\frac{1307}{8}\)
\(\ge152+24+\frac{1307}{8}=\frac{2715}{8}\)
cho x,y la cac so duong thay doi va thoa man dieu kien x+y\(\le\)1. tim gia tri nho nhat cua bieu thuc M=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
biet hai so nguyen x,y thoa man |x|+|y|=8.Tim gia tri nho nhat cua tich xy
tap hop cac so nguyen x thoa man A=/x+2/+/1-x/
dat gia tri nho nhat
Giải :
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
A = |x + 2| + |1 - x| ≥ |x + 2 + 1 - x| = 3
Dấu "=" xảy ra khi (x + 2)(1 - x) ≥ 0 <=> - 2 ≤ x ≤ 1
=> x = { - 2; - 1; 0; 1 }
Vậy với x = { - 2; - 1; 0; 1 } thì A đạt gtnn là 3