Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Nguyen
Xem chi tiết
Minh Nguyen
Xem chi tiết
zZz Cool Kid_new zZz
18 tháng 3 2020 lúc 14:36

A B C D H I J R

Gọi R là trung điểm AI

Ta có:ID=IH;RA=RH nên IR là đường trung bình tam giác AIH => IR//AD => IR vuông góc với AB

=> R là trực tâm tam giác AIH => BR vuông góc với AI

Do IR là đường trung bình tam giác AIH nên IR//AD//BJ;IR=1/2AD=BJ => BRIJ là hình bình hành => BR//IJ

Mà BR vuông góc với AI nên IJ vuông góc với AI => ^AIJ=900

Khách vãng lai đã xóa
Phương Đỗ
27 tháng 3 2020 lúc 14:16

@Cool Kid : Hình như R là trung điểm của AH mới đúng ?!?!!

Khách vãng lai đã xóa
coolkid
27 tháng 3 2020 lúc 14:17

Phương Đỗ ừ

Khách vãng lai đã xóa
Bách Bách
Xem chi tiết
Akai Haruma
22 tháng 12 2020 lúc 1:01

Lời giải:

Xét tam giác ADH và AOH có:

\(\widehat{DAH}=\widehat{OAH}\) (gt)

\(\widehat{AHD}=\widehat{AHO}=90^0\)

AH chung

\(\Rightarrow \triangle ADH=\triangle AOH(g.c.g)\) (1)

\(\Rightarrow AD=AO\Rightarrow \frac{AD}{AO}=1\)

Xét tam giác ADH và AOK có: 

\(\widehat{AHD}=\widehat{AKO}=90^0\)

\(\widehat{DAH}=\widehat{OAB}=\widehat{OAK}\) (gt)

\(\Rightarrow \triangle ADH\sim \triangle AOK(g.g)\Rightarrow \frac{AH}{AK}=\frac{DH}{OK}=\frac{AD}{AO}=1\Rightarrow AH=AK;DH=OK\) 

Vì AO là phân giác của \(\widehat{HAB}\) nên theo tính chất đường phân giác thì:

\(\frac{AH}{AB}=\frac{OH}{OB}\)

Trong đó \(OH=DH\) (do (1)) nên \(OH=\frac{1}{2}OD\). Mà \(OD=OB\) theo tính chất hình bình hành

\(\Rightarrow \frac{AH}{AB}=\frac{OH}{OB}=\frac{1}{2}\)

Mà \(AH=AK\Rightarrow AK=\frac{1}{2}AB\Rightarrow AK=KB\) 

Tam giác AOB có OK vừa là đường cao vừa là đường trung tuyến nên tam giác AOB cân tại O. Do đó OA=OB hay AC=BD nên ABCD là hình chữ nhật (đpcm).

Akai Haruma
22 tháng 12 2020 lúc 1:04

Hình vẽ:

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 11 2018 lúc 16:46

Chọn đáp án A

+ Ta có

nên K là trọng tâm của tam giác BCD

+ Ta dễ dàng chứng minh được SH  ⊥ (BKH) ⇒ SB, (BKH) = SBH

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 6 2018 lúc 2:27

Chọn A.

Phương pháp:

Cách giải:

Trần Hoàng Nhật Vi
Xem chi tiết
Phạm Mai Trang
Xem chi tiết
Phạm Mai Trang
Xem chi tiết
Phạm Mai Trang
Xem chi tiết
Khanh Pham
Xem chi tiết