Thu gọn
\(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2009^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2010^4+\frac{1}{4}\right)}\)
\(B=\frac{\left(a+2008\right)!+\left(a+2009\right)!}{\left(a+2008\right)!-\left(a+2009!\right)}\)