Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Trường
Xem chi tiết
Phan Văn Nam
Xem chi tiết
Cô gái lạnh lùng
Xem chi tiết
Tú Lê Anh
23 tháng 3 2018 lúc 21:14

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

Tú Lê Anh
23 tháng 3 2018 lúc 21:22

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
Phùng Ngọc Hiệp
Xem chi tiết
Nguyễn Quang Huy
10 tháng 1 2017 lúc 21:50

x = -101 ; y = -47

hoặc x = -47 ; y = -101

k cho mk nhé

Cô gái lạnh lùng
Xem chi tiết
alibaba nguyễn
24 tháng 3 2018 lúc 10:16

a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.

Giả sử số lẻ đó là x thì ta có

\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)

\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)

\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)

Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm

alibaba nguyễn
24 tháng 3 2018 lúc 10:19

b/ \(9x^2+2=y^2+y\)

\(\Leftrightarrow36x^2+8=4y^2+4y\)

\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)

\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

alibaba nguyễn
24 tháng 3 2018 lúc 10:22

Câu còn lại thì chia cả 2 vế cho \(5^x\)rồi làm tiếp

Chirikatoji
Xem chi tiết
Minhchau Trần
Xem chi tiết
Hoàng Phúc
Xem chi tiết
alibaba nguyễn
20 tháng 5 2017 lúc 9:06

Không mất tính tổng quát ta giả sử \(x\ge y\)

Ta có:

\(x^2< x^2+8y\le x^2+8x< x^2+8x+16=\left(x+4\right)^2\)

\(\Rightarrow x^2+8y=\left(x+1\right)^2or\left(x+2\right)^2or\left(x+3\right)^2\)

PS: Vì e là CTV nên a chỉ gợi ý thôi nha. Phần còn lại e thử tự nghĩ xem sao nhé. A giải quyết cho e phần khó nhất rồi đấy :)

Tiểu Thư Hiền Hòa
4 tháng 8 2019 lúc 17:17

Anh Alibaba Nguyễn, giải tìm x ntn vậy, em mới tìm được y thôi

Phạm Hoàng Linh Chi
Xem chi tiết

\(\Leftrightarrow x^3+y^3-x^2y-xy^2-6xy=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-xy\left(x+y+6\right)=0\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\) 

\(\Rightarrow a^3-3ab-b\left(a+6\right)=0\)

\(\Leftrightarrow a^3-2b\left(2a+3\right)=0\)

\(\Leftrightarrow8a^3+27-16b\left(2a+3\right)=27\)

\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9\right)-16b\left(2a+3\right)=27\)

\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9-16b\right)=27\)

Tới đây là pt ước số khá đơn giản, chắc em tự hoàn thành bài toán được.