\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
a \(\left(x-1\right)^2-\left(y+1\right)^2=0\)
\(x+3y-5=0\)
b \(xy-2x-y+2=0\)
3x+y=8
c \(\left(x+y\right)^2-4\left(x+y\right)=12\)
\(\left(x-y\right)^2-2\left(x-y\right)=3\)
d \(2x-y=1\)
\(2x^2+xy-y^2-3y=-1\)
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)-12=0\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
Xét pt:
\(\left(x+y\right)^2-4\left(x+y\right)-12=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+2=0\\x+y-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-x-2\\y=6-x\end{matrix}\right.\)
TH1: \(y=-x-2\) thế vào \(\left(x-y\right)^2-2\left(x-y\right)=3\)
\(\Rightarrow\left(2x+2\right)^2-2\left(2x+2\right)=3\)
\(\Leftrightarrow4x^2+4x-3=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\Rightarrow y=-\dfrac{5}{2}\\x=-\dfrac{3}{2}\Rightarrow y=-\dfrac{1}{2}\end{matrix}\right.\)
TH2: \(y=6-x\) thế vào...
\(\left(2x-6\right)^2-2\left(2x-6\right)=3\)
\(\Leftrightarrow4x^2-28x+45=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\Rightarrow y=\dfrac{7}{2}\\y=\dfrac{9}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)
1. \(\left(1-x\right)^2+\left(3-y\right)^2+\left(y^2-x-z\right)^2=0\)
2. \(\left(x-y+z^2\right)+\left(y-2\right)^2+\left(z+3\right)^2=0\)
Làm hộ mình 2 câu này
Lời giải:
1. Ta thấy:
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$
$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$
2.
Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>
1,\(\left\{{}\begin{matrix}x^2+xy-3x+y=0\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=22\\xy\left(x-1\right)\left(y-2\right)=1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^2-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
dễ dàng phân tích được
\(\sqrt{2x-y}=\frac{\left(x^2-x-xy\right)}{\left(y+1\right)}\)
\(\left(y+1\right)=\frac{\left(x^2-x-xy\right)}{\sqrt{2x-y}}\)
\(\left(y+1\right)\sqrt{2x-y}=\frac{\left(x^2-x-xy\right)^2}{\sqrt{2x-y}\left(y+1\right)}\)
thay vào "pt" 1 ta được
\(\left(x^2-x-xy\right)\left(\frac{x^2-x-xy-1}{\sqrt{2x-y}\left(y+1\right)}\right)=0\)
\(x^2-x-xy=0\Leftrightarrow x^2=x\left(1+y\right)\Leftrightarrow x=1+y\)
thay x=y+1 vào pt2 ta được
\(\left(y+1\right)^2+y^2-2y\left(y+1\right)-3\left(y+1\right)+2=0\)
\(\left(y^2+y^2-2y^2\right)+\left(2y-2y-3y\right)+\left(1-3+2\right)=0\)
\(-3y=0\Leftrightarrow y=0\)
thay \(y=0\)
\(\left\{{}\begin{matrix}\left(x-1\right).6+\left(y-2\right).\left(-2\right)=0\\\left(x+1\right).4+\left(y-1\right).\left(-3\right)=0\end{matrix}\right.\)
Giải hpt
\(\Leftrightarrow\left\{{}\begin{matrix}6x-6-2y+4=0\\4x+4-3y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\4x-3y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3-30=0\\x^2y+x\left(1+y+y^2\right)+y-11=0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)
TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)
Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)
TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)
2 câu dưới hình như em hỏi rồi?
Giúp nha :
Tìm x ; y ; z biết :
\(\sqrt{\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2}+3\left(x^2-1\right)\left(y^2-1\right)\left(z^2-1\right)+\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
Chứng minh rằng:\(x^{\left(2^{y+1}\right)}+x^{\left(2^y\right)}+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)...\left(x^{\left(2^{y-1}\right)}+x^{\left(2^{y-2}\right)}+1\right)\left(x^{\left(2^y\right)}+x^{\left(2^{y-1}\right)}+1\right)\)với mọi \(x\in N;x>0\)và \(y\in N;y>1\)
a \(\left|x-1\right|+\left|y-2\right|=2\)
\(\left|x-1\right|+y=3\)
b \(\left|x+1\right|+\left|y-1\right|=5\)
\(\left|x+1\right|-4y+4=0\)
a.
\(\left\{{}\begin{matrix}\left|x-1\right|+\left|y-2\right|=2\\\left|x-1\right|+y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|y-2\right|-y=-1\\\left|x-1\right|+y=3\end{matrix}\right.\)
Xét phương trình: \(\left|y-2\right|-y=-1\)
TH1: \(y\ge2\)
\(\Rightarrow y-2-y=-1\Leftrightarrow-2=-1\) (loại)
TH2: \(y\le2\)
\(\Rightarrow2-y-y=-1\Rightarrow y=\dfrac{3}{2}\)
Thế vào \(\left|x-1\right|+y=3\)
\(\Rightarrow\left|x-1\right|+\dfrac{3}{2}=3\Rightarrow\left|x-1\right|=\dfrac{3}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{3}{2}\Rightarrow x=\dfrac{5}{2}\\x-1=-\dfrac{3}{2}\Rightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|y-1\right|+4y-4=5\\\left|x+1\right|-4y+4=0\end{matrix}\right.\)
Xét phương trình: \(\left|y-1\right|+4y-4=5\)
TH1: \(y\ge1\)
\(\Rightarrow y-1+4y-4=5\Rightarrow y=2\)
Thế vào \(\left|x+1\right|-4y+4=0\)
\(\Rightarrow\left|x+1\right|=4\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
TH2: \(y\le1\)
\(\Rightarrow1-y+4y-4=5\Rightarrow y=\dfrac{8}{3}>1\) (không thỏa mãn)
Tìm cap số (x,y) thoa man
\(x^2+y^2=0\)
\(x^2+2y^2+2y\left(1-x\right)=-1\)
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(4x^2+y^2-2\left(2x+y-1\right)=0\)
\(2x^2\left(1-y\right)+y\left(y+xy-2x\right)=0\)
\(x^2+y^2=0\)
Mà \(x^2\ge0;y^2\ge0\)nên \(x^2+y^2\ge0\)
(Dấu "="\(\Leftrightarrow x=y=0\))
\(x^2+2y^2+2y\left(1-x\right)=-1\)
\(\Leftrightarrow x^2+2y^2+2y-2xy+1=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+1\right)^2=0\)
Mà \(\left(x-y\right)^2+\left(y+1\right)^2\ge0\)
(Dấu "="\(\Leftrightarrow x=-1;y=-1\)