Tìm x,y\(\in\)N* và xy>998, xy<1994 sao cho xy+x và xy+y là 2 số chính phương
tìm giá trị nhỏ nhất của biểu thức p=x^+y^2+xy+4x+5y+998
B1:Tìm x,biết:
x-1000/24+x-998/26+x-996/28=3
B2:Tìm x,y và z
a)xy=-3/5;yz=-4/5;zx=3/4
b)x(x+y+z)=-12
-y(-y-z-x)=18
z(y+z+x)=30
c)xy=z;yz=4x;zx=9y
Lời giải:
Tập xác định của phương trình
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
Chia cả hai vế cho cùng một số
Đơn giản biểu thức
Lời giải thu được
Ẩn lời giải
Kết quả: Giải phương trình với tập xác định
TÍNH NHANH
161 - 102 +103 - 104 + ... + 997 - 998 + 999
tìm số xy biết
xy * x = 95
1. Tìm các giá trị của các biến để các biểu thức sau= 0 :
a) A=3y * 3x với c-y=-2
b) B= x mũ 2- xy - y - y mũ 2 + xy với x-y=1
c) C= x mũ 2019 -5x mũ 2018 + 2017 với x -5 =0
d) D = x mũ 1000 + 12: x mũ 999 -998 với x=-12
Tìm số tự nhiên có hai chữ số dạng \(\overline{xy}\left(x,y\in N,0< x\le9,0\le y\le9\right)\) để \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất
\(\overline{xy}=10.x+y\) Khi đó \(\dfrac{\overline{xy}}{x+y}=\dfrac{10x+y}{x+y}\)
Mặt khác \(\dfrac{10x+y}{x+y}=\dfrac{100x+10y}{10\left(x+y\right)}=\dfrac{19\left(x+y\right)+81x-9y}{10\left(x+y\right)}=\dfrac{19}{10}+\dfrac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\dfrac{19}{10}\)
Do đó, \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất bằng \(\dfrac{19}{10}\) khi \(9x-y=0\) hay \(x=1,y=9\)
Vậy số cần tìm là 19
Tìm các giá trị \(x,y\in\mathbb{N}\) sao cho:
\(x+xy+y=5\)
\(x\) + \(xy\) + y = 5 (\(x;y\in\) N)
(\(x\) + \(x\)y) = 5 - y
\(x\).(1 + y) = 5 - y
\(x\) = \(\dfrac{5-y}{1+y}\)
\(x\) \(\in\) N ⇔ 5 - y \(⋮\) 1 + y ⇒ -(y + 1) + 6 ⋮ 1 + y
⇒ 6 ⋮ 1 + y ⇒ y + 1 \(\in\) Ư(6) = {1; 2; 3; 6} ⇒ y \(\in\) {0; 1; 2; 5}
Lập bảng ta có:
\(y\) | 0 | 1 | 2 | 5 |
\(x\) = \(\dfrac{5-y}{1+y}\) | 5 | 2 | 1 | 0 |
Theo bảng trên ta có:
Các cặp số tự nhiên \(x\); y thỏa mãn đề bài lần lượt là:
(\(x;y\)) = (5; 0); (2;1); (1;2); (0; 5)
Tìm \(x,y,z\in N\)* biết: \(xy+yz+zx=2+xyz\)
Tìm x và y biết x,y . xy,x = xy,xy
x,y . xy,x = xy,xy
0,1 * xy,x = 1,01
xy,x= 1,01
x= 1 ; y=0
Tìm x,y thuộc N biết: a) xy= 6. b) xy=40 và x>y
a)Do x,y là STN mà xy=6=1.6=2.3
=>(x;y)={(1;6);(6;1);(2;3);(3;2)}
b)Do x,y là STN mà xy=40=1.40=2.20=4.10=8.5
=>(x;y)={(1;40);(40;1);(2;20);(20;2);(4;10);(10;4);(8;5);(5;8)}