Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2017 lúc 8:07

Gọi số cần tìm có dạng a b c d ¯  với  a , b , c , d ∈ A = 0 , 1 , 2 , 3 , 4 , 5 .

Vì a b c d ¯  là số chẵn  ⇒    d ∈ 0 , 2 , 4 .

TH1. Nếu  d = 0 số cần tìm là a b c 0 ¯ .  Khi đó: A \ 0 ,    a ,    b

a được chọn từ tập A \ 0  nên có 5 cách chọn.

b được chọn từ tập A \ 0 ,    a  nên có 4 cách chọn.

c được chọn từ tập  nên có 3 cách chọn.

Như vậy, ta có 5.4.3 = 60  số có dạng  a b c 0 ¯ .

TH2. Nếu d = 2 , 4 ⇒    d :  có 2 cách chọn.

Khi đó, a có 4 cách chọn (khác 0 và d), b có 4 cách chọn và c có 3 cách chọn.

Như vậy, ta có 2.4.4.3 =  96 số

Vậy có tất cả 60 + 96 = 156 số

Chọn đáp án A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2017 lúc 17:00

Gọi số cần tìm có dạng a b c d ¯  với  a , b , c , d ∈ A = 0 , 1 , 2 , 3 , 4 , 5 .

Vì a b c d ¯  là số chẵn  ⇒    d = 0 , 2 , 4 .

TH1. Nếu d= 0,  số cần tìm là a b c 0 ¯ .  Khi đó:

a được chọn từ tập A \ 0  nên có 5 cách chọn.

b được chọn từ tập A \ 0 ,    a  nên có 4 cách chọn.

c được chọn từ tập A \ 0 ,    a ,    b  nên có 3 cách chọn.

Như vậy, ta có 5.4.3 =  60 số có dạng  a b c 0 ¯ .

TH2. Nếu d ∈ 2 , 4 ⇒    d  có 2 cách chọn.

Khi đó, a có 4 cách chọn (khác 0 và d),

b có 4 cách chọn và c có 3 cách chọn.

Như vậy, ta có 2.4.4.3 = 96 số cần tìm như trên.

Vậy có tất cả 60 +96 = 156 số cần tìm.

Chọn đáp án A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 1 2017 lúc 2:08

Đáp án C

Gọi số tự nhiên cần lập có dạng a b c ¯ a , b , c ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; a ≠ 0  

Bài toán không yêu cầu số tự nhiên có 3 chữ số khác nhau.

Chọn c = {0;2;4;6} có 4 cách chọn, chọn a ≠ 0  có 6 cách chọn và chọn b có 7 cách chọn.

Theo quy tắc nhân có: 4.6.7 = 168 số.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 8 2017 lúc 10:00

Đáp án B

Phương pháp: Gọi số tự nhiên có ba chữ số cần tìm là a b c   ( a ≠ 0 ) , tìm số cách chọn cho các chữ số a, b,c sau đó áp dụng quy tắc nhân.

Cách giải: Gọi số tự nhiên có ba chữ số cần tìm là  a b c   ( a ≠ 0 )

Có 4 cách chọn c.

Có 6 cách chọn a.

Có 7 cách chọn b.

Vậy có 4.6.7 = 168 số.

Chú ý và sai lầm: Các chữ số a, b, c không yêu cầu khác nhau.

Mai Ngô
Xem chi tiết
ngô thúy hòa
13 tháng 10 2016 lúc 21:06

Chữ số hàng trăm có 5 cách chọn

Chữ số hàng chục có 6 cách chọn

Chữ số hàng đơn vị có 3 cách chọn( vì có 3 số chẵn trong 6 cs trên)

vậy có tất cả5x6x3 = 90 số chẵn

nguyen do thuc linh
13 tháng 10 2016 lúc 21:06

số chẵn là phải là số có tận cùng 0,2,4

chữ số hàng trăm có 5 cách khác0

chữ số hàng chục có 6 cách chọn giống hàng trăm

chữ số hàng đơn vị có 3 cách

    vậy có thể lập là 5x6x3=90

  nhớ k nha

Phạm Hoàng Khang
13 tháng 10 2016 lúc 21:12

co 6 ch so 

chu so hang tram co 6 cach chon nhung so 0 khong dung dau vi day la so co 3 chu so nen chi con 5 cach chon

chu so hang chuc co 5 chach tron

chu so hang don vi co 4 cach tron

vay lay duoc 5x5x4=100 so

nat lu
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 1 2022 lúc 16:03

a. Gọi chữ số cần lập là \(\overline{abcd}\)

TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)

a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)

\(\Rightarrow4.8.8.7\) số

Tổng cộng: \(A_9^3+4.8.8.7=...\)

b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách

Hoán vị 3 chữ số 0,1,2: có \(3!\) cách

Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách

Ta đi tính số trường hợp 0 đứng đầu:

Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách

Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách

Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số

Ngọc Huyền Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 20:15

Gọi số cần tìm có dạng là \(\overline{abcd}\)

a có 3 cách chọn là 1;2;3

b có 3 cách chọn là (0;1;2;3 loại bớt số a đã chọn đi)

c có 2 cách chọn là (0;1;2;3 loại bớt hai số a,b)

d có 1 cách chọn

=>Có 3*3*2*1=18 cách

Gọi số chẵn cần tìm là: \(\overline{abcd}\)

TH1: d=0

a có 3 cách chọn

b có 2 cách chọn

c có 1 cách chọn

=>Có 3*2*1=6 số

TH2: d=2

a có 2 cách chọn

b có 2 cách chọn

c có 1 cách chọn

=>Có 2*2*1=4 số

Do đó, có 6+4=10 số chẵn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 6 2017 lúc 17:13

Chọn D

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 

a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 3 cách xếp sao cho ba chữ số chẵn đứng liền nhau là 

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b;c})

Suy ra, số các số tự nhiên thỏa đề ra là 

Le Tu Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2023 lúc 20:26

a: Có thể lập được 3*4*4=48 số

b: Có thể lập được 3*3*2*1=18 số

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 9 2017 lúc 12:44

Chọn A

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}.

Ta có,

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng a b c d e ¯  (a có thể bằng 0) là .

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  0 b c d e ¯  

Suy ra, số các số tự nhiên thỏa đề ra là .

Ý tưởng phát triển câu 39: thêm ràng buộc về thứ tự sắp xếp cho số tự nhiên lập được.