n*(n+2) chia hết cho 8 với n là số chẵn
Chứng tỏ (n+2).(n+4) chia hết cho 8 với n là số chẵn
n là số chẵn nên n = 2k (k \(\in\) N).
Ta có (n + 2).(n + 4) = (2k + 2).(2k + 4) = 2k.(2k + 4) + 2.(2k + 4) = 4k2 + 8k + 4k + 8
= 4k2 + 12k + 8 = k.(4k + 12) + 8 = k.[4.(k + 3)] + 8 chia hết cho 8.
1) gọi A là tổng các số chẵn không vượt quá 2010
B là tổng các số lẻ không vượt quá 2010
hỏi hiệu A-B có chia hết cho 2 không cho 5 không
2) CMR tích 2 số chẵn liên tiếp chia hết cho 8
3) tìm n thuộc N sao cho
a) n+8 chia hết cho n
b) n+5 chia hết cho n-1
c) 2n +7 chia hết cho n+1
2) Chứng minh rằng: với mọi số tự nhiên n tích (n+4)(n+7) là số chẵn
3) Tìm x ϵ N biết : a) 101 chia hết cho x - 1
b) (a+3) chia hết cho (a+1)
4) So sánh: \(^{8^9}\) và \(^{9^8}\) (về mũ 5)
Bài 2:
Với $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Với $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)
Bài 3:
a.
$101\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$
$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$
Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$
b.
$a+3\vdots a+1$
$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$
$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$
$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
cho n là số chẵn
chứng minh: \(20^n+16^n-3^n-1\) chia hết cho 323 (hoặc chứng minh hộ mik chia hết cho 19)
giúp mik với mik cảm ơn! (mik cần trước ngày 20/8)
\(323=17.19\)
+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)
\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)
+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮\left(20-3\right)=17\)
\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)
Mà \(\left(17,19\right)=1\)
\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)
1/ Chứng minh rằng:
a) Tích hai số chẵn liên tiếp chia hết cho 8.
b) Tích ba số nguyên liên tiếp chia hết cho 6.
c) Tích năm số nguyên liên tiếp chia hết cho 120.
2/ Chứng minh rằng với mọi số nguyên m, n:
a) n3 + 11n chia hết cho 6.
b) mn (m2 - n2) chia hết cho 3.
c) n (n + 1) (2n + 1) chia hết cho 6.
3/ Cho m, n là hai số chính phương lẻ liên tiếp. Chứng minh rằng mn - m - n + 1 chia hết cho 192.
4/ Tích 3 số chẵn liên tiếp chia hết cho bao nhiêu?
5/ Cho p là số nguyên tố lớn hơn 3. Chứng minh: p2 - 1 chia hết cho 24.
6/ (HSG toàn quốc - 1970) Chứng minh rằng: n4 - 4n3 - 4n2 + 16n chia hết cho 3 với n là một số chẵn lớn hơn 4.
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.tích của 3 số nguyên liên tiếp chia hết cho 3.tích của 5 số nguyên liên tiếp chia hết cho 5.vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
(a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)12a chia hết cho 6.vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
sao dài yữ vậy trời???????????????????????????????????????
1,Chứng minh biểu thức A=2017+(n+6).(n+8).(n+13) ko chia hết cho 6 với mọi STN n
2, CM:4 số chẵn liên tiếp ko chia hết cho 128
3, CM với mọi STN a thì trong các số a+1,a+15,a+7,a+8,a+ 14 luôn có 1 số chia hết cho 5
CẦN GẤP!!
Chứng minh:
a) m3+20m chia hết ch 48 với m là số nguyên chẵn
b) n12-n8-n4+513 chia hết cho 512 với n là số nguyên lẻ
Ta có: A =n^12-n^8-n^4+1
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2
=(n^4+1)[(n^2+1)(n^2-1)]^2
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1)
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8
Do đó : A chia hết cho 64*8=512
a, Ta có m là số nguyên chẵn
=> m có dạng 2k
=> m3+20m=(2k)3+20.2k
=8k3+40k=8k(k2+5)
Cần chứng minh k(k2+5) chia hết cho 6
Nếu k chẵn => k(k2+5) chia hết cho 2
Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2
Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3
Nếu k chia 3 dư 1 hoặc dư 2 thì
k có dạng 3k+1 hoặc 3k+2
=> (3k+1)[(3k+1)2+5)]
=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3
=> k(k2+5) chia hết cho 3
Nếu k chia 3 dư 2
=> k có dạng 3k +2
=> k(k2+5)=(3k+2)[(3k+2)2+5]
=(3k+2)(9k2+12k+9)
Vì 9k2+12k +9 chia hết cho 3
=> k(k^2+5) chia hết cho 3
=> k(k2+5) chia hết cho 6
=> 8k(k2+5) chia hết cho 48
=> dpcm
cho số N =dcba.CMR:
a, N chia hết cho 4 <->a+2b chia hết cho 4
b, N chia hết cho 8 <-> a+2b+4c chia hết cho 8
c, N chia hết cho 16<->a +2b+4c+8d chia hết cho 16 với b chẵn
Tính làm nhưng buồn ngủ qá! để mai nhs! ngủ ngon, msđ
CMR :
a) m^3 +20m chia hết cho 48 với mọi m nguyên dương chẵn
b) A= 20^n+ 116^n - 3^n -1 chia hết cho 323 với n là số tự nhiên chẵn
a) CMR: ( n^2+n-1)^2 chia hết cho 24 với mọi số nguyên n
b) CMR: n^3+6n^2 +8n chia hết cho 48 với mọi số n chẵn
c) CMR : n^4 -10n^2 +9 chia hết cho 384 với mọi số n lẻ