B=3+3^2+3^3+3^4+3^5+3^6+...+3^100
k TÍNH HÃY CHỨNG TỎ:
b CHIA HẾT CHO4
chứng tỏ:B= 3 + 32 + 33 + 34+ ... +31991chia hết cho 13
B= 3 + 32 + 33 + 34 + ... +31991chia hết cho 41
Lời giải:
$B=3+3^2+(3^3+3^4+3^5)+(3^6+3^7+3^8)+....+(3^{1989}+3^{1990}+3^{1991})$
$=12+3^3(1+3+3^2)+3^6(1+3+3^2)+...+3^{1989}(1+3+3^2)$
$=12+(1+3+3^2)(3^3+3^6+...+3^{1989})$
$=12+13(3^3+3^6+...+3^{1989})$
$\Rightarrow B$ chia $13$ dư $12$.
2/
$B=3+3^2+3^3+...+3^{1991}$
$3B=3^2+3^3+3^4+...+3^{1992}$
$\Rightarrow 3B-B=3^{1992}-3$
$\Rightarrow 2B=3^{1992}-3$
Có:
$3^4\equiv -1\pmod {41}$
$\Rightarrow 3^{1992}=(3^4)^{498}\equiv (-1)^{498}\equiv 1\pmod {41}$
$\Rightarrow 3^{1992}-3\equiv 1-3\equiv -2\pmod {41}$
$\Rightarrow 2B\equiv -2\pmod {41}$
$\Rightarrow 2B\not\vdots 41$
$\Rightarrow B\not\vdots 41$.
Cho B= 3+ 32+33+34+...+330
a) Tính B?
b)Chứng tỏ B chia hết cho4?
a)\(B=3+3^2+3^3+....+3^{30}\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{31}\)
\(\Rightarrow3B-B=\left(3^2+3^3+3^4+...+3^{31}\right)-\left(3+3^2+3^3+....+3^{30}\right)\)
\(\Rightarrow2B=3^{31}-3\)
\(\Rightarrow B=\frac{3^{31}-3}{2}\)
b) \(B=3+3^2+3^3+3^4+...+3^{30}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{29}+3^{30}\right)\)
\(=3.\left(1+3\right)+3^3.\left(1+3\right)+....+3^{29}.\left(1+3\right)\)
\(=4.\left(3+3^3+.....+3^{29}\right)⋮4\)
Vậy B chia hết cho 4
chứng tỏ rằng 1+3+32+33+34+.....+399 chia hết cho4
Bài giải
Ta có :
\(1+3+3^2+3^3+3^4+...+3^9\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)
\(\Rightarrow\text{ ĐPCM}\)
Bài giải
\(1+3+3^2+3^3+3^4+...+3^9\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)
\(\Rightarrow\text{ ĐPCM}\)
\(\frac{7}{1\cdot5}+\frac{7}{5\cdot9}+\frac{7}{9\cdot13}+\frac{7}{13\cdot17}+\frac{7}{17\cdot21}\)
\(=\frac{7}{4}\left(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\right)\)
\(=\frac{7}{4}\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{7}{4}\left(1-\frac{1}{21}\right)\)
\(=\frac{7}{4}\cdot\frac{20}{21}\)
\(=\frac{35}{21}\)
b,CM: B= 3^1+3^2+3^3+.....+3^2010 chia hết cho4&13
c,CM: C= 5^1+5^2+5^3+.....+5^2010 chi hết cho 6&31
d, D= 7^1+7^2+7^3+.....+ 7^2010 chia hết cho 8&57
GIÚP MIK NỐT 3 CÂU NÀY NHA MN
b: B=3(1+3)+3^3(1+3)+...+3^2009(1+3)
=4(3+3^3+...+3^2009) chia hết cho 4
B=3(1+3+3^2)+3^4(1+3+3^2)+...+3^2008(1+3+3^2)
=13(3+3^4+...+3^2008) chia hết cho 13
c: \(C=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)
\(C=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)
\(=31\left(5+5^4+...+5^{2008}\right)⋮31\)
d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)
\(D=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)
\(=57\left(7+7^4+...+7^{2008}\right)⋮57\)
Bài 1 chứng Minh
a,N^2+n+6 ko chia hết cho 5
b,n^2+n+1 ko chia hết cho4
c,n ( n + 1 ) ( n + 5 ) chia hết cho 3
ử dụng phương pháp phản chứng
giả sử n chia hết cho 5
=>n có dạng 5k
=>n^2+n+1=25k^2+5k+1=5k(5k+1)+1
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5
=>25k^2+5k+1 ko chia hết cho 5 (đpcm)
1.a,chứng minh 12^4.54^2=36^5
b,10^6-5^7 chia hết cho 59
c,cho S=1+3^1+3^2+3^3…+3^99 chứng minh S chia hết cho 4, S chia hết cho 40
2. Tính: 10^4.27^3/6^4.15^4
Hãy chứng minh
a,6⁵×5-3⁵ chia hết cho 53
b, 2+2²+2³+2⁴+...+2¹²⁰ chia hết cho 3,7,31,17
c,3⁴ⁿ+¹ +2⁴ⁿ+¹ chia hết cho 5
d, 75+(4²⁰⁰⁶ + 4²⁰⁰⁵+4²⁰⁰⁴+...+1)×25 chia hết cho 100
a) Đặt A = \(6^5.5-3^5\)
\(=\left(2.3\right)^5.5-3^5\)
\(=2^5.3^5.5-3^5\)
\(=3^5.\left(2^5.5-1\right)\)
\(=3^5.\left(32.5-1\right)\)
\(=3^5.159\)
\(=3^5.3.53⋮53\)
Vậy \(A⋮53\)
b) Đặt \(B=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(B⋮3\)
\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{118}.7\)
\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)
Vậy \(B⋮7\)
\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{116}.31\)
\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)
Vậy \(B⋮31\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)
\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(=2.255+2^9.255+...+2^{113}.255\)
\(=255.\left(2+2^9+...+2^{113}\right)\)
\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)
Vậy \(B⋮17\)
c) Đặt C = \(3^{4n+1}+2^{4n+1}\)
Ta có:
\(3^{4n+1}=\left(3^4\right)^n.3\)
\(2^{4n}=\left(2^4\right)^n.2\)
\(3^4\equiv1\left(mod10\right)\)
\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)
\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)
\(2^4\equiv6\left(mod10\right)\)
\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)
\(\Rightarrow\) Chữ số tận cùng của C là 5
\(\Rightarrow C⋮5\)
d) Đặt \(D=75+\left(4^{2006}+4^{2005}+4^{2004}+...+1\right).25\)
Đặt \(E=4^{2006}+4^{2005}+4^{2004}+...+1\)
\(\Rightarrow4E=4^{2007}+4^{2006}+4^{2005}+...+4\)
\(\Rightarrow3E=4E-E\)
\(=\left(4^{2007}+4^{2006}+4^{2005}+...+4\right)-\left(4^{2006}+4^{2005}+4^{2004}+...+1\right)\)
\(=4^{2007}-1\)
\(\Rightarrow E=\dfrac{\left(4^{2007}-1\right)}{3}\)
\(\Rightarrow D=75+\dfrac{4^{2007}-1}{3}.25\)
Ta có:
\(4^{2007}=\left(4^2\right)^{1003}.4\)
\(4^2\equiv6\left(mod10\right)\)
\(\left(4^2\right)^{1003}\equiv6^{1003}\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow4^{2007}\equiv\left(4^2\right)^{1003}.4\left(mod10\right)\equiv6.4\left(mod10\right)\equiv4\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(4^{2007}\) là 4
a/ Chứng minh: A = 2^1 + 2^2 + 2^3 + 2^4 +......+ 2^2010 chia hết cho 3 và 7
b/ Chứng minh: B = 3^1 + 3^2 + 3^3 + 3^4 +......+ 3^2010 chia hết cho 4 và 13
c/ Chứng minh: C = 5^1 + 5^2 + 5^3 + 5^4 +......+ 5^2010 chết hết cho 6 và 31
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
Mà câu c bạn đánh chia hết thành chết hết rồi kìa
B=1+3+32+...+311chia hết cho4
C=1+32+33+...+3119chia hết cho13
B = 1 + 3 + 32 +......+ 311
= (1+3)+(32+33)+.....+(310+311)
= 1.(1+3)+32(1+3)+.....+310(1+3)
= (1+3)(1+32+.....+310)
= 4(1+32+......+310) chia hết cho 4
Vậy B chia hết cho 4
câu b của bạn thiếu số 3 ở giữa số 1 và 32 nghen