b: B=3(1+3)+3^3(1+3)+...+3^2009(1+3)
=4(3+3^3+...+3^2009) chia hết cho 4
B=3(1+3+3^2)+3^4(1+3+3^2)+...+3^2008(1+3+3^2)
=13(3+3^4+...+3^2008) chia hết cho 13
c: \(C=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)
\(C=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)
\(=31\left(5+5^4+...+5^{2008}\right)⋮31\)
d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)
\(D=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)
\(=57\left(7+7^4+...+7^{2008}\right)⋮57\)