Biết 2x(9x-4)-3x(6x-7)=26. Giá trị của x là:
Biết 2 x ( 9 x – 4 ) – 3 x ( 6 x – 7 ) = 26 . Giá trị của x là:
A. –2
B. 2
C. -26/29
D. 26/29
giá trị của x thỏa mãn : 6x(1-3x) + 9x( 2x-7) + 171
giúp mình với ạ
25. Thực hiện phép tính :
a) (3x-1)(6x-1) 2x(9x-4);
b) (y-3)(y² + y + 1) − y(y² - 2).
26. Rút gọn biểu thức A rồi tính giá trị biểu thức với x = −2.
A = (2x-1)(6x + 5) - (4x + 1)(3x-2).
26:
A=12x^2+10x-6x-5-(12x^2-8x+3x-2)
=12x^2+4x-5-12x^2+5x+2
=9x-3
Khi x=-2 thì A=-18-3=-21
25:
b: \(\left(y-3\right)\left(y^2+y+1\right)-y\left(y^2-2\right)\)
=y^3+y^2+y-3y^2-3y-3-y^3+2y
=-2y^2-3
Tính giá trị đa thức
B=9x^10-12x^7+6x^4+3x+2010
Biết rằng 3x^9-4x^6+2x^3+1=0
Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của các biểu thức sau: x^2-4x+10; (1-x)(3x-4); 3x^2-9x+5; -2x^2+5x+2; -3x^2-6x+5; x^4-2x^2+3.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
Help me
Cho đa thức:
1. A(x)=6x4-4x2-3+9x+5x2-7x-2x4+4-2x-4x4
Tính giá trị của A(x) biết /3x-1/=1/2
2.Cho đa thức B(x)=(2x+3)2+1
Tìm x biết B(x) có giá trị bằng hỗn số 3 7/9
MK ĐANG CẦN GẤP AI NHANH 3 TICK
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
Câu 2:
Theo đề, ta có:
\(B\left(x\right)=\left(2x+3\right)^2+1=3\frac{7}{9}\)
\(\left(2x+3\right)^2=\frac{34}{9}-1=\frac{25}{9}\)
TH1: \(2x+3=\frac{-5}{3}\Rightarrow2x=\frac{-5}{3}-3=-\frac{14}{3}\)
TH2: \(2x+3=\frac{5}{3}\Rightarrow2x=\frac{5}{3}-3=\frac{-4}{3}\)
tìm x biết
(3x+2)(2x+9)-(x+2)(6x+1)=7
3(2x-1)(3x-1)-(2x-3)(9x-1)=0
cho x+y=a và xy=b tính giá trị biểu thức
x5 + y5
tìm giá trị lớn nhất ,nhỏ nhất của các biểu thức sau:
a)3x^2+6x+4
b)-3x-x^2+4
c)9x^2-6x+8
d)5x-16x^2+4
e)-2x-x^2+4
a) Đặt A = \(3x^2+6x+4\)
\(A=3\left(x^2+2x+1\right)+1\)
\(A=3\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy Min A =1 khi x = -1
b) Đặt \(B=-3x-x^2+4\)
\(-B=x^2+3x-4\)
\(-B=\left(x^2+3x+\frac{9}{4}\right)-\frac{25}{4}\)
\(-B=\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\)
Mà \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge\frac{-25}{4}\)
\(\Leftrightarrow B\le\frac{25}{4}\)
Dấu "=" xảy ra khi : \(x=-\frac{3}{2}\)
Vậy...
Bài 4 chứng minh các biểu thức ko thuộc giá trị của biến
c)( x-3) (x^2+3x+9)-x^3
D) ( 3x+2 )(9x^2 -6x+4) -9x (3x^2+1)+9x
Lời giải:
c.
$(x-3)(x^2+3x+9)-x^3=x^3-3^3-x^3=-27$ không phụ thuộc vào giá trị của biến
Ta có đpcm
d.
$(3x+2)(9x^2-6x+4)-9x(3x^2+1)+9x$
$=(3x)^3+2^3-27x^3-9x+9x$
$=27x^3+8-27x^3=8$ không phụ thuộc vào giá trị của biến
Ta có đpcm
c) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x^3\)
\(=x^3-27-x^3\)
=-27
d) Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-9x\left(3x^2+1\right)+9x\)
\(=27x^3+8-27x^3-9x+9x\)
=8
rút gọn rồi tính giá trị biểu thức
a,\(\dfrac{9x^2-6x+1}{9x^2+1}\) tại x =-3
b, \(\dfrac{x^2-6x+9}{-9x+3x^2}\) tại x=-\(\dfrac{1}{3}\)
c, \(\dfrac{x^2-4x+4}{2x^2-4x}\) tại x=-\(\dfrac{1}{2}\)
a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)
\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{3x-1}{3x+1}\)
\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)
b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)
\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)
\(=\dfrac{x-3}{3x}\)
\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)
c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)
\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)
\(=\dfrac{x-2}{2x}\)
\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)