\(\left(3x+2\right)\left(x-1\right)-3\left(x+1\right)\left(x-2=4\right)\)
rut gon
\(\left(3x-1\right)^2+2\left(9x^2-1\right)+\left(3x+1\right)^2\)
\(\left(x^2-1\right)\left(x+3\right)-\left(x-3\right)\left(x^3+3x+9\right)\)
\(\left(x+4\right)\left(x-4\right)-\left(x-4\right)^2\)
\(\left(3x-1\right)^2+2\left(9x^2-1\right)+\left(3x+1\right)^2\)
\(=9x^2-6x+1+18x^2+2+9x^2+6x+1\)
\(=36x^2+4\)
\(\left(x^2-1\right)\left(x+3\right)-\left(x-3\right)\left(x^3+3x+9\right)\)
\(=x^3+3x^2-x+3-\left(x^4+3x^2+9x-3x^3-9x-27\right)\)
\(=x^3+3x^2-x+3-x^4-3x^2-9x+3x^3+9x-27\)
\(=\left(3x^2-3x^2\right)+\left(9x-9x\right)-x-\left(27-3\right)+x^3-x^4+3x^3\)
\(=-x-24+x^3-x^4+3x^3\)
\(\left(x+4\right)\left(x-4\right)-\left(x-4\right)^2\)
\(=x^2-16-\left(x-4\right)^2\)
\(=x^2-16-x^2+8x-16\)
\(=8x-32\)
giải phương trình
1)\(2\left(x-3\right)+1=2\left(x+1\right)-9\)
2)\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
3) \(\left(x-1\right)^2+\left(x+2\right)\left(x-2\right)=\left(2x+1\right)\left(x-3\right)\)
4)\(\left(x+5\right)\left(x-1\right)-\left(x+1\right)\left(x+2\right)=1\)
5) \(\dfrac{6x-1}{15}-\dfrac{x}{5}=\dfrac{2x}{3}\)
6)\(\dfrac{5\left(x-2\right)}{2}-\dfrac{x+5}{3}=1-\dfrac{4\left(x-3\right)}{5}\)
\(1,2\left(x-3\right)+1=2\left(x+1\right)-9\\ \Rightarrow2x-6+1=2x+2-9\\ \Rightarrow2x-5=2x-7\\ \Rightarrow-2=0\left(vô.lí\right)\)
\(2,\dfrac{5-x}{2}=\dfrac{3x-4}{6}\\ \Rightarrow30-6x=6x-8\\ \Rightarrow12x=38\\ \Rightarrow x=\dfrac{19}{6}\)
\(3,\left(x-1\right)^2+\left(x+2\right)\left(x-2\right)=\left(2x+1\right)\left(x-3\right)\\ \Rightarrow x^2-2x+1+x^2-4=2x^2-6x+x-3\\ \Rightarrow2x^2-2x-3=2x^2-5x-3\\ \Rightarrow3x=0\\ \Rightarrow x=0\)
\(4,\left(x+5\right)\left(x-1\right)-\left(x+1\right)\left(x+2\right)=1\\ \Rightarrow x^2+5x-x-5-x^2-2x-x-2=1\\ \\ \Rightarrow x-7=1\\ \Rightarrow x=8\)
\(5,\dfrac{6x-1}{15}-\dfrac{x}{5}=\dfrac{2x}{3}\\ \Rightarrow\dfrac{6x-1}{15}-\dfrac{3x}{15}=\dfrac{10x}{15}\\ \Rightarrow6x-1-3x=10x\\ \Rightarrow3x-1=10x\\ \Rightarrow7x=-1\\ \Rightarrow x=\dfrac{-1}{7}\)
\(6,\dfrac{5\left(x-2\right)}{2}-\dfrac{x+5}{3}=1-\dfrac{4\left(x-3\right)}{5}\\ \Rightarrow\dfrac{75\left(x-2\right)}{30}-\dfrac{10\left(x+5\right)}{30}=\dfrac{30}{30}-\dfrac{24\left(x-3\right)}{30}\\ \Rightarrow75\left(x-2\right)-10\left(x+5\right)=30-24\left(x-3\right)\\ \Rightarrow75x-150-10x-50=30-24x+72\\ \Rightarrow65x-200=102-24x\\ \Rightarrow89x=302\\ \Rightarrow x=\dfrac{320}{89}\)
Tìm x biết
1) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
2)\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x+1\right)-33\)
3)\(6x\left(3x+5\right)-2x\left(9x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)-17x^2=0\)
4)\(\left(x-1\right)\left(x+2\right)-\left(x-3\right)+5x-7=0\)
Giúp mình nha. Camon nhiều
Tìm x biết :
a) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
b) \(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^3+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
c) \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)+\left(x+4\right)^2\)
d) \(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
a) (x-2)3+6(x+1)2-x3+12=0
⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0
⇒ 24x+10=0
⇒ 24x=-10
⇒ x=-5/12
a.
PT \(\Leftrightarrow x^3-6x^2+12x-8+6(x^2+2x+1)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow 24x+10=0\Leftrightarrow x=\frac{-5}{12}\)
b. Bạn xem lại đề, nghiệm khá xấu không phù hợp với mức độ tổng thể của bài.
c.
PT $\Leftrightarrow (4x^2+12x+9)+(x^2-1)=5(x^2+4x+4)+(x^2-4x-5)+9(x^2+6x+9)$
$\Leftrightarrow 10x^2+42x+64=0$
$\Leftrightarrow x^2+(3x+7)^2=-15< 0$ (vô lý)
Do đó pt vô nghiệm.
d.
PT $\Leftrightarrow (1-6x+9x^2)-(9x^2-17x-2)=(9x^2-16)-9(x^2+6x+9)$
$\Leftrightarrow 11x+3=-54x-97$
$\Leftrightarrow 65x=-100$
$\Leftrightarrow x=\frac{-20}{13}$
a) \(^{ }\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
b) \(^{ }8\left(x-2\right)-3\left(x^2-4x-5\right)-5x^2\)
c) \(^{^{ }}\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
a: Ta có: \(\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=8\left(7x+4\right)\)
=56x+32
b: Ta có: \(8\left(x-2\right)^2-3\left(x^2-4x-5\right)-5x^2\)
\(=8x^2-32x+32-3x^2+12x+15-5x^2\)
\(=-20x+47\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
\(=x^3+3x^2+3x+1-x^3+1-3x^2-3x\)
=2
Tìm x, biết:
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
a) \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+10=3x^2-12x+20\)
\(\Leftrightarrow3x^2-7x-2=3x^2-12x+20\)
\(\Leftrightarrow-7x+12x=20+2\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\dfrac{22}{5}\)
tick cho mk nha
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow24x^2+16x-9x-6-4x^2-23x-28=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34-10x^2-3x+1=0\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\Delta=\left(-19\right)^2-4.10.\left(-33\right)=1320\)
\(x_1=3;x_2=\dfrac{-11}{10}\)
Tick cho mk nha
c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-4x+15x^2-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Rightarrow x=\dfrac{43}{42}\)
Tick cho mk nha
Tính:
a) \(\left(x^2-2\right).\left(1-x\right)+\left(x+3\right).\left(x^2-3x+9\right)\)
b) \(\left(2x^4+x^3-3x^2+4x-3\right):\left(x^2-x+1\right)\)
a: \(=x^2-x^3-2+2x+x^3+27=x^2+2x+25\)
b: \(=\dfrac{2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x-2-x-1}{x^2-x+1}\)
\(=2x^2+3x-2+\dfrac{-x-1}{x^2-x+1}\)
Giải các phương trình sau:
f. 5 – (x – 6) = 4(3 – 2x)
g. 7 – (2x + 4) = – (x + 4)
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
i. \(\left(x-2^3\right)+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x=2x^3-16\)
<=>\(8x=-16\)
<=>\(x=-2\)
i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)
<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(6x^2-2x-10=0\)
<=>\(3x^2-x-5=0\)
<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>\(x=\dfrac{1}{5}\)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)
<=>\(8x=-16\)
<=>x=-2
i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(9x+6=0\)
<=>x=\(\dfrac{-2}{3}\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>
Tìm x:
a. \(\left(3x+4\right)\left(3x-4\right)-\left(2x+5\right)^2=\left(x-5\right)^2+\left(2x+1\right)^2-\left(x^2-2x\right)+\left(x-1\right)^2\)
b. \(-5\left(x+3\right)^2+\left(x-1\right)\left(x+1\right)+\left(2x-3\right)^2=\left(5x-2\right)^2-5x\left(5x+3\right)\)
\(a,\left(3x+4\right)\left(3x-4\right)-\left(2x+5\right)^2=\left(x-5\right)^2+\left(2x+1\right)^2-\left(x^2-2x\right)+\left(x-1\right)^2\\ \Leftrightarrow\left(9x^2-16\right)-\left(4x^2+20x+25\right)=x^2-10x+25+4x^2+4x+1-x^2+2x+x^2-2x+1\\ \Leftrightarrow9x^2-16-4x^2-20x-25=5x^2-6x+27\\ \Leftrightarrow5x^2-20x-41=5x^2-5x+27\\ \Leftrightarrow-15x=68\\ \Leftrightarrow x=-\dfrac{68}{15}\)Vậy..
Câu sau cũng tương tự nhé
1. \(\frac{1}{2}x^2-\left(\frac{1}{2}x-4\right)\frac{1}{2}x=-14\)
2. \(3\left(1-4x\right)\left(x-1\right)+4\left(3x-2\right)\left(x+3\right)=-27\)
3. \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)
4. \(\left(3x-3\right)\left(5-21x\right)+\left(7x+4\right)\left(9x-5\right)=44\)
5. \(\left(-2+x^3\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)
Yêu cầu đề bài là gì hả bạn?