Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngo quang minh
Xem chi tiết
Kiều Vũ Linh
28 tháng 11 2023 lúc 20:30

(x² + 7)(x² - 7) < 0

⇒ x² - 7 < 0

⇒ x² < 7

⇒ -√7 < x < √7

Mà x ∈ Z

⇒ x ∈ {-2; -1; 0; 1; 2}

Ngo quang minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 11 2023 lúc 5:50

\(\left(x^2+7\right)\left(x^2-7\right)< 0\)

mà \(x^2+7>=7>0\forall x\)

nên \(x^2-7< 0\)

=>\(x^2< 7\)

=>\(-\sqrt{7}< x< \sqrt{7}\)

mà x nguyên

nên \(x\in\left\{-2;-1;0;1;2\right\}\)

Nguyễn Việt Bách
Xem chi tiết
Nguyễn Đức Trí
29 tháng 8 2023 lúc 10:13

Bạn xem lại đề

when the imposter is sus
29 tháng 8 2023 lúc 20:52

Sửa đề: Tìm x, y thuộc Z biết x2 + 2x + y = xy

Bài làm:

\(x^2+2x+y=xy\)

\(x^2+2x=xy-y\)

\(x\left(x+2\right)=y\left(x-1\right)\)

\(\dfrac{x}{y}=\dfrac{x-1}{x+2}\)

Đặt xk = x - 1; yk = x + 2; k ≠ 0. Nếu k = 1 thì x = x - 1 hay 0 = -1, vô lí.

Suy ra

xk - x = -1

x(k - 1) = -1

\(x=-\dfrac{1}{k-1}\)

\(yk=2-\dfrac{1}{k-1}\)

\(y=\dfrac{2-\dfrac{1}{k-1}}{k}\)

(từ đoạn này thì phải tìm k để x và y nguyên nhưng chưa xử lí được)

Phạm Duy
Xem chi tiết
Xyz OLM
16 tháng 1 2023 lúc 22:25

x2 - 3y2 + 2xy + 2x - 4y - 7 = 0

<=> 4.(x2 - 3y2 + 2xy + 2x - 4y - 7) = 0

<=> 4x2 - 12y2 + 8xy + 8x - 16y - 28 = 0

<=> (4x2 + 8xy + 4y2) + (8x + 8y) + 4 - 16y2 - 24y - 32 = 0

<=> (2x + 2y)2 + 4(2x + 2y) + 4 - (16y2 + 24y + 9) = 23

<=> (2x + 2y + 2)2 - (4y + 3)2 = 23

<=> (2x + 6y + 5)(2x - 2y - 1) = 23

\(x;y\inℤ\Rightarrow2x+6y+5;2x-2y-1\inℤ\) 

Lập bảng : 

2x + 6y + 5 1 23 -1 -23
2x - 2y - 1 23 1 -23 -1
x 17/2(loại) 3 -9 -7/2(loại)
y   2 2  

Vậy (x;y) = (3;2) ; (-9;2) 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 8 2019 lúc 4:15

Phan van anh
Xem chi tiết
Edogawa Conan
1 tháng 10 2019 lúc 14:45

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

Edogawa Conan
1 tháng 10 2019 lúc 14:49

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2018 lúc 16:41

a)  x ( x + 6 ) = 0 ⇔ x = 0 x + 6 = 0 ⇔ x = 0 x = − 6

Vậy  x = 0 hoặc  x = - 6

b)  ( x − 3 ) . ( y + 7 ) = 0 ⇔ x − 3 = 0 y + 7 = 0 ⇔ x = 3 y = − 7

Vậy x = 3 hoặc x = -7

c)  ( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2   ( L )

Vậy x = 2

Nguyễn Hoàng Vy
Xem chi tiết
Zuster X
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2018 lúc 14:46