Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phat Tran
Xem chi tiết
The Moon
Xem chi tiết
Akai Haruma
30 tháng 9 2021 lúc 10:21

Lời giải:

Ta có:

$\widehat{ACB}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow BC\perp AD$

$\widehat{ABD}=90^0$ (theo tính chất tiếp tuyến)

$\Rightarrow \triangle ABD$ vuông tại $B$

Vậy tam giác $ABD$ vuông tại $B$ có đường cao $BC$. Áp dụng công thức hệ thức lượng:

$BC^2=AC.CD$ (đpcm)

b. 

$BO=BC=OC$ nên $BOC$ là tam giác đều

$\Rightarrow \widehat{CBO}=60^0$

$\Rightarrow \widehat{DAB}=\widehat{CAD}=30^0$

Xét tam giác $ABD$ vuông:

$BC=AB\tan \widehat{DAB}=2R\tan 30^0=8\tan 30^0=\frac{8\sqrt{3}}{3}$ (cm)

 

Akai Haruma
30 tháng 9 2021 lúc 10:22

Hình vẽ:

nguyễn hải thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 13:53

loading...

Ta có: ΔOCD cân tại O

mà OM là đường cao(OM\(\perp\)CD tại I)

nên OM là trung trực của CD

The Moon
Xem chi tiết
๖ۣMoonLight
Xem chi tiết
thắng
1 tháng 5 2021 lúc 14:51

ý a dễ

b/ Ta có IM=IN (đề bài) => OI vuông góc AN => ^AIO=90

Ta lại có ^ABO=^ACO=90 (AB,AC là tiếp tuyến)

=> B,I,C đều nhìn AO dưới 1 góc 90 độ => B,I,C cùng nằm trên 1 đường tròn đường kính AO => B,I,C,O cùng nằm trên 1 đường tròn

c/

Ta có AB=AC => số đo cung AB thuộc đường tròn đk AO = số đo cung AC thuộc đường tròn đk AO (1)

số đo ^AIB=1/2 số đo cung AB (góc nội tiếp) (2)

số đo ^AIC=1/2 sso đo cung AC (góc nội tiếp) (3)

Từ (1) (2) và (3) => ^AIB=^AIC => AI là phân giác của góc BIC

Khách vãng lai đã xóa
๖ۣMoonLight
1 tháng 5 2021 lúc 14:54

@Bakura : Câu a với b mình chứng minh được rồi bạn, mình cần câu c. Bạn biết làm câu c thì giúp mình với ạ, cảm ơn bạn.

Khách vãng lai đã xóa
Nhok baka
Xem chi tiết
The Moon
Xem chi tiết

ta có: 
gọi H là trung điểm BC
AH=6
sinB=AH/AB=6/10
theo định lí sin: AC/sinB=2R
<=>10/(6/10)=2R=>R=25/3 cm ( ngoại tiếp)
S=1/2.AH.BC=48
p=18
S=pr
=>r=S/p=48/18=2,6 (nội tiếp)

Nguyễn Hoàng Minh
15 tháng 10 2021 lúc 7:40

Gọi AM là đg cao tg ABC thì AM cũng là trung tuyến

Do đó \(BM=\dfrac{1}{2}BC=8\left(cm\right)\)

Áp dụng PTG: \(AM=\sqrt{AB^2-BM^2}=6\left(cm\right)\)

Ta có \(S=p\cdot r\) với p là nửa chu vi, S là diện tích, r là bán kính đg tròn nt tg ABC

Mà \(S=\dfrac{1}{2}AM\cdot BC=48\left(cm^2\right);p=\dfrac{10\cdot2+16}{2}=18\left(cm\right)\)

\(\Rightarrow r=\dfrac{S}{p}=\dfrac{48}{18}\approx2,7\left(cm\right)\)

Nguyễn Hoàng Minh
15 tháng 10 2021 lúc 7:53

\(a,\) Ta có \(AC=CM;MD=DB\) (t/c 2 tiếp tuyến cắt nhau)

\(\Rightarrow\dfrac{AC}{BD}=\dfrac{CM}{MD}\)

Mà AC//BD(⊥AB) nên \(\dfrac{AC}{BD}=\dfrac{AN}{ND}\)

Từ đó \(\Rightarrow\dfrac{CM}{DM}=\dfrac{AN}{ND}\Rightarrow AC//MN\) (Ta-lét đảo)

\(b,MN//AC\Rightarrow NI//AC//BD\\ \Rightarrow\dfrac{NI}{BD}=\dfrac{AN}{AD}=\dfrac{CM}{CD}=\dfrac{MN}{BD}\\ \Rightarrow NI=MN\)

Vậy N là trung điểm MI

Ngọc ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 22:17

a: Xét tứ giác HMCN có 

\(\widehat{HMC}+\widehat{HNC}=180^0\)

Do đó: HMCN là tứ giác nội tiếp

b: Xét tứ giác ANMB có 

\(\widehat{ANB}=\widehat{AMB}=90^0\)

Do đó: ANMB là tứ giác nội tiếp

Smiling12233
Xem chi tiết
Lê Duy Nam
29 tháng 11 2023 lúc 13:38
Gọi I là giao điểm của EG và HF. Theo định lí tiếp tuyến, ta có: $\angle{OBE} = \angle{OBF} = 90^\circ$ và $\angle{ODF} = \angle{ODG} = 90^\circ$. Vì $BE$ và $DF$ là tiếp tuyến của đường tròn (O), nên $OE$ và $OF$ là phân giác của $\angle{BOD}$. Tương tự, $OG$ và $OH$ là phân giác của $\angle{BOD}$. Khi đó, ta có: $\angle{EOI} = \angle{FOI} = \angle{GOI} = \angle{HOI} = 90^\circ$. Do đó, $OEIF$ và $OFIG$ là các hình chữ nhật. Vì $OE = OF$ và $OG = OH$, nên $OEIF$ và $OFIG$ là các hình vuông. Từ đó, ta có: $BE = EF$ và $DG = GH$. Vì $ABCD$ là hình thoi, nên $AB = AD$ và $BC = CD$. Khi đó, ta có: $AB = AD = BE + EF = BE + DF$ và $BC = CD = DG + GH = EG + HF$. Từ đó, ta suy ra: $BE + DF = EG + HF$. Do đó, $BE.DF = EG.HF$. Từ định lí tiếp tuyến, ta có: $BE.DF = OB^2$ và $EG.HF = OG^2$. Vì $OB = OG$ (bán kính đường tròn (O)), nên ta có: $BE.DF = OB.OD$.

Vậy, ta đã chứng minh được a) BE.DF = OB.OD.

b) Ta có:

Gọi I là giao điểm của EG và HF. Theo chứng minh ở câu a), ta có: $OEIF$ và $OFIG$ là các hình vuông. Khi đó, ta có: $\angle{EOI} = \angle{FOI} = \angle{GOI} = \angle{HOI} = 90^\circ$. Do đó, ta có: $\angle{EOI} + \angle{FOI} + \angle{GOI} + \angle{HOI} = 360^\circ$. Từ đó, ta suy ra: $\angle{EOI} + \angle{FOI} + \angle{GOI} + \angle{HOI} = 360^\circ$. Vì $EG \parallel HF$, nên ta có: $\angle{EOI} + \angle{FOI} = 180^\circ$. Từ đó, ta suy ra: $\angle{GOI} + \angle{HOI} = 180^\circ$. Do đó, ta có: $\angle{GOI} = \angle{HOI}$. Vậy, ta đã chứng minh được b) EG // HF.
Le Trung Kien
Xem chi tiết