1) vì sao xy//mn
2)tính D2,D3,D4
Cùng một vật được thả vào bốn bình đựng bốn chất lỏng khác nhau (H.12.4). Hãy dựa vào hình vẽ để so sánh trọng lượng riêng của các chất lỏng.
A. d1 > d2 > d3 > d4
B. d4 > d1 > d2 > d3
C. d3 > d2 > d1 > d4
D. d4 > d1 > d3 > d2
Chọn C
Khi vật chìm thì lực đẩy Ác - si – mét FA < P nên d4 < dv. Do đó trọng lượng riêng của chất lỏng d4 là nhỏ nhất. Khi vật lơ lửng trong chất lỏng thì lực đẩy Ác – si – mét FA = P nên dl = dv mà các vật đều giống nhau nên dv là như nhau nên d1 > d4.
Khi vật nổi trên chất lỏng thì lực đẩy Ác – si – mét cân bằng với trọng lượng của vật nên lực đẩy Ác – si – mét trong hai trường hợp đó bằng nhau (bằng trọng lượng của vật).
+ Trường hợp thứ hai: F2 = d2.V2
+ Trường hợp thứ ba: F3 = d3.V3
Mà F2 = F3 và V2 > V3 (V2, V3 là thể tích của phần chất lỏng bị vật chiếm chỗ). Do đó, trọng lượng riêng của chất lỏng thứ hai lớn hơn trọng lượng riêng của chất lỏng thứ nhất hay d2 < d3.
Từ trên ta có: d3 > d2 > d1 > d4
tìm tất cả các số nguyên dương n để n=d1^2+d2^2+d3^2+d4^2 trong đó d1,d2,d3,d4 là 4 ước nguyên dương nhỏ nhất của n và d1<d2<d3<d4
Cho ba đường thẳng d 1 : y = 2 x - 3 ; d 2 : y = - x + 3 ; d 3 : y = - 2 x + 1 . Lập phương trình đường thẳng d 4 song song với d 1 và ba đường thẳng d 2 , d 3 , d 4 đồng quy.
A. y = 2 x - 7
B. y = 2 x + 9
C. y = - 2 x + 9
D. y = - x + 9
Giao điểm A(x; y) của hai đường thẳng d 2 và d 3 là nghiệm hệ phương trình: y = - x + 3 y = - 2 x + 1 ⇔ x = - 2 y = 5 ⇒ A ( - 2 ; 5 )
Do đường thẳng d 4 // d 1 nên d 4 có dạng: y = 2x + b
Ba đường thẳng d 2 ; d 3 ; d 4 đồng quy nên điểm A(-2; 5) thuộc đường thẳng d 4 .
Suy ra: 5 = 2.(-2) + b ⇔ b = 9
Vậy phương trình đường thẳng ( d 4 ) là y = 2x + 9.
Cho 4 đt sau : d1 y=x, d2: y= -x+2,d3:y=x-2,d4:y=mx+n . Tìm d4 để đưoengf thẳng d1,d2,d3,d4 cắt nhau tại 4 điểm tạo thành hình vuông
Cho (d1) y = (m +2)x + 3
(d2) y = 3x - 1
(d3) y = 2x + 4
(d4) y = 2mx - 2
a) tìm m để 3 đường thẳng d1, d2 và d3 đồng quy
b) tìm m để d4, d1, d3 đồng quy
<giải tắt>
a/ \(d_2\text{ giao }d_3\text{ tại }A\left(5;14\right)\)
Để d1; d2; d3 đồng quy thì \(A\in d_1\Leftrightarrow14=\left(m+2\right).5+3\Leftrightarrow m=\frac{1}{5}\)
b/ Gọi tọa độ điểm đồng quy là \(M\left(a;2a+4\right)\)(do M thuộc d3)
\(M\in d_1\Rightarrow2a+4=\left(m+2\right)a+3\Leftrightarrow ma=1\)
\(M\in d_4\Rightarrow2a+4=2m.a-2\Rightarrow2a+4=2.1-2\Rightarrow a=-2\)
\(\Rightarrow m=\frac{1}{a}=-\frac{1}{2}\)
\(a)\)Pt hoành độ giao điểm của \(d_2\)và \(d_3\)thỏa mãn:
\(3x-1=2x+4\)
\(\Leftrightarrow3x-2x=4+1\)
\(\Leftrightarrow x=5\)
Thay \(x=5\)vào \(y=3x-1\)
\(\Leftrightarrow y=3.5-1=14\)
Vậy \(d_2\)giao \(d_3\)tại \(M\left(5;14\right)\)
\(\Rightarrow d_1\) \(,\)\(d_2\)\(,\)\(d_3\)đồng quy
\(\Leftrightarrow d_1\)cắt \(M\left(5;14\right)\)
\(\Leftrightarrow\left(m+2\right).5+3=14\)
\(\Leftrightarrow m+2=\frac{11}{5}\)
\(\Leftrightarrow m=\frac{1}{5}\)
Hay ve so do mach dien gom 1 nguon dien ,3 khoa k1 k2 k3 va 4 bong den d1 d2 d3 d4 sao cho
Ca ba khoa mo 4 den deu sang
K1 dong chi co d4 sang
K2 dong chi co d1 sang
K3 dong co d1 d3 d4 sang
Cho hàm số
(d) y=(m2-2)x+m-1
(d1)y=2x-3
(d2)y=-x-2
(d3)y=3x-2
(d4)y=4/5x-1/2
a) (d) // (d1)
b) (d) trùng với (d2)
c)(d) cắt (d3) tại điểm có hoành độ x=-1
d)(d) vuông góc với (d4)
a) Để (d)//(d1) thì \(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne-2\end{matrix}\right.\Leftrightarrow m=2\)
b) Để (d) trùng với (d2) thì
\(\left\{{}\begin{matrix}m^2-2=-1\\m-1=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=1\\m=-1\end{matrix}\right.\Leftrightarrow m=-1\)
c) Để (d) cắt (d3) thì
\(m^2-2\ne3\)
\(\Leftrightarrow m^2\ne5\)
\(\Leftrightarrow m\notin\left\{\sqrt{5};-\sqrt{5}\right\}\)
Để (d) cắt (d3) tại một điểm có hoành độ x=-1 thì
Thay x=-1 vào hàm số \(y=3x-2\), ta được:
\(y=3\cdot\left(-1\right)-2=-3-2=-5\)
Thay x=-1 và y=-5 vào hàm số \(y=\left(m^2-2\right)x+m-1\), ta được:
\(\left(m^2-2\right)\cdot\left(-1\right)+m-1=-5\)
\(\Leftrightarrow2-m^2+m-1=-5\)
\(\Leftrightarrow-m^2+m-1+5=0\)
\(\Leftrightarrow-m^2+m+4=0\)
\(\Leftrightarrow m^2-m-4=0\)
\(\Leftrightarrow m^2-2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{17}{4}=0\)
\(\Leftrightarrow\left(m-\dfrac{1}{2}\right)^2=\dfrac{17}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}m-\dfrac{1}{2}=\dfrac{\sqrt{17}}{2}\\m-\dfrac{1}{2}=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{17}+1}{2}\left(nhận\right)\\m=\dfrac{1-\sqrt{17}}{2}\left(nhận\right)\end{matrix}\right.\)
d) Để (d) vuông góc với (d4) thì \(\left(m^2-2\right)\cdot\dfrac{4}{5}=-1\)
\(\Leftrightarrow m^2-2=-1:\dfrac{4}{5}=-1\cdot\dfrac{5}{4}=\dfrac{-5}{4}\)
\(\Leftrightarrow m^2=-\dfrac{5}{4}+2=\dfrac{-5}{4}+\dfrac{8}{4}=\dfrac{3}{4}\)
hay \(m\in\left\{\dfrac{\sqrt{3}}{2};-\dfrac{\sqrt{3}}{2}\right\}\)
a) vẽ các đồ thị hàm số sau trên cùng một mặt phẳng tọa độ Oxy
y=\(\dfrac{x+3}{2}\)(d1);y=-2x(d2);y=\(\dfrac{x}{2}-2\)(d3);y=-2x+4(d4)
b)gọi tọa độ các điểm (d1) với (d2) và (d4) theo thứ tự A,B các giao điểm của (d3) với (d2) và (d4) theo thứ tự D,C
+ ABCD là hình gì ?
+ tìm tọa độ giao điểm A,B,C,D và tính diện tích hình đó
a:
b: (d1): y=1/2x+3/2; (d2): y=-2x; (d3): y=1/2x-2; (d4): y=-2x+4
=>(d1) vuông góc (d2), (d1) vuông góc (d4); (d2) vuông góc (d3); (d2)//(d4)
=>ABCD là hình chữ nhật
=>A(-3/5;6/5); B(2/5;16/5); C(4/5;-8/5); D(12/5;-4/5)
Cho ( d1): y = x – 2 , ( d2): y = - 2x + 4
a) Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ. b) Tìm m và k của (d3) y = (m + 2)x + 2k - 7 biết (d3) // (d1)
c) Tìm m và k của (d4) y = (4 - 2m)x + k +1 biết (d4) cắt (d1) tại một điểm trên trục tung
d) Tìm m và k của (d5) y = (3m - 1)x + 4k - 3 biết (d5) trùng (d1)
c: Vì (d4) cắt (d1) tại một điểm trên trục tung nên k+1=-2
hay k=-3
cho hình vẽ biết c//d và b 1 = 85 độ c4 = 105 độ tính các góc a1,a2,a3,a4,b2,b3,b4,c1,c2,c3,d1,d2,d3,d4