Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê văn đại
Xem chi tiết
Dương Khôi Nguyên
28 tháng 12 2021 lúc 10:02

Ho

Nguyễn Đỗ Gia Khánh
16 tháng 9 lúc 20:06

cả Q và P đều bằng 3

Mai Sương Nguyễn
Xem chi tiết
Phạm Hoàng Linh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2023 lúc 11:03

p=5; q=2

 

anchi123
Xem chi tiết
Nguyễn Linh Giang
4 tháng 1 2023 lúc 14:18

a)nếu p=2 thì :

p+10=2+10=12 là hợp số(loại)

nếu p=3 thì:

p+10=3+10=13 là số nguyên tố 

p+14=3+14=17 là số nguyên tố

(thỏa mãn)

nếu p>3 thì:

p sẽ bằng 3k+1 hoặc 3k+2

trường hợp 1:p=3k+1

nếu p=3k+1 thì:

p+14=3k+1+14=3k+15=3 nhân (k+5)chia hết cho 3(3 chia hết cho3) là hợp số(loại)

trường hợp 2:p=3k+2

nếu p=3k+2 thì:

p+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)

vậy nếu  p>3 thì không có giá trị nào thỏa mãn

vậy p=3

b)nếu q=2 thì :

q+10=2+10=12 là hợp số(loại)

nếu q=3 thì:

q+2=3+2=5 là số nguyên tố 

q+10=3+10=13 là số nguyên tố

(thỏa mãn)

nếu q>3 thì:

q sẽ bằng 3k+1 hoặc 3k+2

trường hợp 1:q=3k+1

nếu q=3k+1 thì:

q+2=3k+1+2=3k+3=3 nhân (k+1)chia hết cho 3(3 chia hết cho3) là hợp số(loại)

trường hợp 2:q=3k+2

nếu q=3k+2 thì:

q+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)

vậy nếu  q>3 thì không có giá trị nào thỏa mãn

vậy q=3

Nguyễn Hà Minh Nghĩa
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 13:51

a: p=3

b: p=3

Đoàn Nguyễn
19 tháng 12 2021 lúc 13:54

a.\(p\in\left\{3\right\}\)
b.\(q\in\left\{3\right\}\)

Nguyễn Hoàng Tùng
19 tháng 12 2021 lúc 14:03

\(a,\) p có dạng 3k+1;3k+2 hoặc 3k

\(TH1:p=3k+1\\ \Rightarrow p+14=3k+1+14=3k+15⋮3\left(loại\right)\\ TH2:p=3k+2\\ \Rightarrow p+10=3k+12⋮3\left(loại\right)\\ TH3:p=3k\Rightarrow p+10=3k+10\left(chọn\right)\\ \Rightarrow p+14=3k+14\left(chọn\right)\)

Vậy p có dạng 3k thỏa mãn
\(\Rightarrow p=3\)

Bạn làm tương tự với câu b nha

Nguyễn Hà Minh Nghĩa
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2021 lúc 15:57

a: p=3

b: q=3

Nguyễn Tiến Khôi
Xem chi tiết
Bùi Gia Linh
16 tháng 4 lúc 20:35

A ) nếu p=2 thì p+4=2+4=6(loại)

nếu p=3 thì p+4=3+4=7và p+10=3+10=13(thỏa mãn)

nếu p>3 thì ta có dạng p=3k+1 và p=3k+2

trường hợp 1: p=3k+2 thì p+10=3k+2+10=3k+12 chia hết cho 3 (loại)

trường hợp 2: p=3k+1 thì p+4=3k+1+4=3k+5

mà 3k+5=3k+3+2=3(k+1)+2 \(\Rightarrow\)p+10=3(k+1)+2+10=3(k+1)+12  (loại)

                 vậy p=3 thì p+10,p+4 là số nguyên tố

B)nếu q=2 thì q+2=2+2=4 (loại)

nếu q=3 thì q+2=3+2=5 và q+8=3+8=11 ( thỏa mãn)

nếu q>3 ta có dạng q=3k+1 và q=3k+2

trường hợp 1: q=3k+1  thì q+8=3k +1 +8=3k + 9 chia hết cho 3 ( loại)

trường hợp 2: q=3k +2 thì q+8=3k+2+8 =3k+10=3k+9+1=3(k+3)+1

\(\Rightarrow\)q+8=3(k+3)+1+8=3(k+3)+9 chia hết cho 3 ( loại)

            vậy q=3 thì q+2,q+8 là số nguyên tố

Binh Tran
Xem chi tiết
Nguyễn Phan Anh
Xem chi tiết
Lê Anh Duy
Xem chi tiết
Nguyễn Hải Nam
1 tháng 9 2017 lúc 20:47

q = 2, p = 5 nhưng vấn đề là cách làm thế nào mình không biết! ai biết giúp với!

Steolla
2 tháng 9 2017 lúc 8:31

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)