Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh An
Xem chi tiết
ILoveMath
20 tháng 8 2021 lúc 8:20

1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)

\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)

\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)

Nguyễn Minh An
Xem chi tiết
Trần Bảo Ngân
Xem chi tiết
YuanShu
26 tháng 11 2023 lúc 12:30

\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\left(dkxd:x\ne0,x\ne5\right)\\ =\dfrac{3x-x-1}{x\left(x-5\right)}=\dfrac{2x-1}{x^2-5x}\)

----------------------------------------

\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\left(dkxd:x\ne0,y\ne-2\right)\\ =\dfrac{8}{4}.\dfrac{15x^2.x^3}{3x^2}=10x^3\)

------------------------------------------

\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\left(dkxd:x\ne1,x\ne-1\right)\\ =\dfrac{8\left(y-1\right)}{3\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2}{4\left(y-1\right)^3}\\ =\dfrac{2\left(x-1\right)}{3\left(x+1\right)\left(y-1\right)^2}\)

DUTREND123456789
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 21:05

a: ĐKXĐ: \(\left\{{}\begin{matrix}x< >\dfrac{3}{2}y\\x< >-\dfrac{y}{3}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{4}{2x-3y}+\dfrac{5}{3x+y}=-2\\\dfrac{-5}{2x-3y}+\dfrac{3}{3x+y}=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{20}{2x-3y}+\dfrac{25}{3x+y}=-10\\-\dfrac{20}{2x-3y}+\dfrac{12}{3x+y}=84\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{37}{3x+y}=74\\-\dfrac{5}{2x-3y}+\dfrac{3}{3x+y}=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\-\dfrac{5}{2x-3y}+3:\dfrac{1}{2}=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\\dfrac{-5}{2x-3y}=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=\dfrac{3}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}11x=\dfrac{7}{6}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{66}\\3y=2x+\dfrac{1}{3}=\dfrac{7}{33}+\dfrac{1}{3}=\dfrac{6}{11}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{7}{66}\\y=\dfrac{2}{11}\end{matrix}\right.\)(nhận)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x< >y-2\\x< >-y+1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{7}{x-y+2}-\dfrac{5}{x+y-1}=\dfrac{9}{2}\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{14}{x-y+2}-\dfrac{10}{x+y-1}=9\\\dfrac{15}{x-y+2}+\dfrac{10}{x+y-1}=20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{29}{x-y+2}=29\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-y+2=1\\3+\dfrac{2}{x+y-1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\\dfrac{2}{x+y-1}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-y=-1\\x+y-1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\x+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)(nhận)

c:

ĐKXĐ: \(\left\{{}\begin{matrix}y< >2x\\y< >-x\end{matrix}\right.\)

 \(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{3}{2x-y}-\dfrac{3}{x+y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=6\\2x-y=3\end{matrix}\right.\)

=>x=2 và y=2x-3=4-3=1(nhận)

d:ĐKXĐ: \(\left\{{}\begin{matrix}x< >-y+1\\x< >\dfrac{1}{2}y-\dfrac{3}{2}\end{matrix}\right.\)

 \(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}+\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{15}{x+y-1}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{19}{x+y-1}=\dfrac{19}{2}\\\dfrac{15}{x+y-1}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y-1=2\\\dfrac{15}{2}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\\dfrac{5}{2x-y+3}=7-\dfrac{15}{2}=-\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y=3\\2x-y+3=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=-10\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{3}\\y=3-x=3+\dfrac{10}{3}=\dfrac{19}{3}\end{matrix}\right.\left(nhận\right)\)

e:

ĐKXĐ: \(x\ne\pm2y\)

 \(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{6}{x-2y}+\dfrac{8}{x+2y}=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{6}{x+2y}=5\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\\dfrac{3}{x-2y}+4:\dfrac{-6}{5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\\dfrac{3}{x-2y}=-1+4\cdot\dfrac{5}{6}=-1+\dfrac{10}{3}=\dfrac{7}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\x-2y=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{3}{35}\\x-2y=\dfrac{9}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3}{70}\\2y=x-\dfrac{9}{7}=-\dfrac{87}{70}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{70}\\y=-\dfrac{87}{140}\end{matrix}\right.\left(nhận\right)\)

Cíu iem
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 10 2021 lúc 22:06

b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)

\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)

\(=\dfrac{2y^2+8y+12}{y-1}\)

Minh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 21:41

1.

\(y'=12x+\dfrac{4}{x^2}\)

2.

\(y'=\dfrac{3}{\left(-x+1\right)^2}\)

3.

\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)

4.

\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)

\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)

5.

\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)

6.

\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)

prolaze
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 3 2021 lúc 21:47

Bài 1: 

b) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\left(x-3\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)

Vậy: \(x\in\left\{13;-7\right\}\)

Phạm Thùy Linh ( team ❤️...
Xem chi tiết
Phạm Nguyễn Gia Phú
4 tháng 10 2024 lúc 20:19

1,7y

Lê Hoàng Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:28

a) Để y nguyên thì \(6x-4⋮2x+3\)

\(\Leftrightarrow-13⋮2x+3\)

\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)

\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)

hay \(x\in\left\{-1;-2;5;-8\right\}\)

Nguyễn Trần Lam Trúc
Xem chi tiết
Nguyễn Huy Tú
16 tháng 7 2021 lúc 13:52

undefined