(x+y)^3+27^3
`1-27x^3`
`x-3^3 +27`
`27x^3 +27x^2 +9x+1`
`(x^6)/27 - (x^4 y)/3 +x^2 y-y^3`
Phân tích thành nhân tử
\(1-27x^3\)
\(=1-\left(3x\right)^3\)
\(=\left(1-3x\right)\left(1+3x+9x^2\right)\)
\(---\)
\(x-3^3+27\)
\(=x-27+27=x\)
\(---\)
\(27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)
\(=\left(3x+1\right)^3\)
\(---\)
\(\dfrac{x^6}{27}-\dfrac{x^4y}{3}+x^2y^2-y^3\) (sửa đề)
\(=\left(\dfrac{x^2}{3}\right)^3-3\cdot\left(\dfrac{x^2}{3}\right)^2\cdot y+3\cdot\dfrac{x^2}{3}\cdot y^2-y^3\)
\(=\left(\dfrac{x^2}{3}-y\right)^3\)
#Ayumu
1-27x\(^3\)
=(1-3x)(1+3x+9x\(^2\)
27/4=-x/3=3/y2=(z+3)3/-4=lltl-2l/8
tìm x, y, z
27/4=-x/3=3/y2=(z+3)3/-4=lltl-2l/8
tìm x, y, z
27/4=-x/3=3/y2=(z+3)3/-4=lltl-2l/8
tìm x, y, z
câu 3
ta có \(\frac{x}{-3}\)=y/5 => x=\(\frac{-3y}{5}\)
thay x= -3y/5 vào xy=-5/27 ta được
-\(\frac{-3y}{5}\)*y=-5/27
=>\(\frac{-3y^{^2}}{5}\)=-5/27
=>.-3y^2 =-5/27 :5=-5/27*1/5
=> -3y^2=-1/27
=>y^2 =-1/27 :(-3)=-1/27*(-1/3)=1/81
=>y=1/9
Khi đó x= -5/27 : 1/9 = -5/27 *9 = -5/3
vậy x= -5/3 ,y = 1/9
p=(m^2-2m+4)(m+2)-m^3(m+3)(m-3)-m^2-18
chung minh gia tri cua N=(x+y)^3-9(x+y)^2+27(x+y)-27 ko phu thuoc vao m
P = ( m2 - 2m + 4 )( m + 2 ) - m3( m + 3 )( m - 3 ) - m2 - 18
= m3 + 8 - m3( m2 - 9 ) - m2 - 18
= m3 + 8 - m5 + 9m3 - m2 - 18
= -m5 + 10m2 - m2 - 10
N = ( x + y )3 - 9( x + y )2 + 27( x + y ) - 27
= ( x + y )3 - 3.( x + y )2.3 + 3.( x + y ).32 - 33
= ( x + y - 3 )3
Phụ thuộc vào biến hết mà ;-;
\(P=\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+\left(m^2-9\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
Vậy biểu thức trên kh thụ vào biến m
\(N=\left(x+y\right)^3-9\left(x+y\right)^2+27\left(x+y\right)-27\)
\(=\left(x+y\right)^3-3\left(x+y\right)^2.3+3\left(x+y\right)3^2-3^3\)
\(=\left(x+y-3\right)^3\)
D=(x+y)3-9(x+y)2+27(x+y)-27. Tại x=2, y=6
\(D=\left(2+6\right)^3-9\left(2+6\right)^2+27\left(2+6\right)-27\)
\(=8^3-3\cdot3\cdot8^2+3\cdot3^2\cdot8-3^3\)
\(\left(8-3\right)^3=5^3=125\)
D=(x+y)3-9(x+y)2+27(x+y)-27. Tại x=2, y=6
(x^2-3x+9)(3-x)=27-x^3
(x^3+x^2y+xy^2+y^3)(x-y)=x^4-y^4
a)
\(3x^2-x^3-9x+3x^2+27-9x=27-x^3\)
\(-x^3+6x^2-18x+27=27-x^3\)
\(6x^2-18x=0\)
\(6x\left(x-3\right)=0\)
\(\orbr{\begin{cases}6x=0\\x-3=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
b)
\(x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\)
\(x^4-y^4=x^4-y^4\)
\(0=0\left(llđ\forall x\right)\)
a) ( x2 - 3x + 9 )( 3 - x ) = 27 - x3
<=> -x3 + 6x2 - 18x + 27 = 27 - x3
<=> -x3 + 6x2 - 18x + x3 = 27 - 27
<=> 6x2 - 18x = 0
<=> 6x( x - 3 ) = 0
<=> \(\orbr{\begin{cases}6x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
b) Ta có VP = ( x2 )2 - ( y2 )2
= ( x2 - y2 )( x2 + y2 )
= ( x - y )( x + y )( x2 + y2 )
= ( x - y )[ ( x + y )( x2 + y2 ) ]
= ( x - y )( x3 + xy2 + x2y + y3 ) = VT
Vậy phương trình nghiệm đúng với mọi x, y ∈ R
a,\(\left(x^2-3x+9\right)\left(3-x\right)=27-x^3\)
\(27-x^3=27-x^3\)
b,\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
\(VP=x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)
\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=VP\)
Tìm 3 số nguyên dương x,y,z sao cho:
(x-y)^3+(y-z)^3+3./z-x/=27
18 x y - 5 =4 27 : y +3 =6 126 :(42-y)=3 Y x2014/3 - y x 2013/3
Tìm x,y,z biết: x/y=2/3; y/z=3/4 và x+y+z=27