Phân tích đa thức sau thành nhân tử: x4+2011x2+2010x+2011
Phân tích đa thức thành nhân tử
\(x^4+2011x^2+2010x+2011\)
=(x4−x3+2011x2)+
(x3−x2+2011x)+(x2−x+2011)
=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)
=(x2+x+1)(x2−x+2011)
=(x4−x3+2011x2)+(x3−x2+2011x)+(x2−x+2011)
=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)
=(x2+x+1)(x2−x+2011)
x3−x2+2011x)+(x2−x+2011)
=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)=(x2+x+1)(x2−x+2011)
Phân tích đa thức sau thành nhân tử: x4 + 4
x4 + 4
= (x2)2 + 22
= x4 + 2.x2.2 + 4 – 4x2
(Thêm bớt 2.x2.2 để có HĐT (1))
= (x2 + 2)2 – (2x)2
(Xuất hiện HĐT (3))
= (x2 + 2 – 2x)(x2 + 2 + 2x)
Phân tích đa thức sau thành nhân tử: x4 – 2x2
x4 – 2x2
(Có x2 là nhân tử chung)
= x2(x2 – 2)
Phân tích đa thức sau thành nhân tử: x4 +4y2
Sửa đề: x^4+4y^4
=x^4+4x^2y^2+4y^4-4x^2y^2
=(x^2+2y^2)^2-4x^2y^2
=(x^2-2xy+2y^2)(x^2+2xy+2y^2)
Phân tích các đa thức sau thành nhân tử: c ) x 4 - y 4
x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)
phân tích đa thức thành nhân tử
x4 + 2010x2 + 2009x + 2011
không tích trước
\(x^4+2010x^2+2009x+2010\)
\(=x^4-x+\left(2010x^2+2010x+2010\right)\)
\(=x\left(x^3-1\right)+2010\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2010\right]=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)
Phân tích các đa thức sau thành nhân tử: x 4 - 2 x 3 - 2 x 2 - 2 x - 3
x 4 - 2 x 3 - 2 x 2 - 2 x - 3 = ( x 4 − 1 ) − ( 2 x 3 + 2 x 2 ) − ( 2 x + 2 ) = ( x 2 + 1 ) ( x 2 − 1 ) − 2 x 2 ( x + 1 ) − 2 ( x + 1 ) = ( x 2 + 1 ) ( x − 1 ) ( x + 1 ) − 2 x 2 ( x + 1 ) − 2 ( x + 1 ) = ( x + 1 ) ( x 2 + 1 ) ( x − 1 ) − 2 x 2 – 2 = ( x + 1 ) ( x 2 + 1 ) ( x − 1 ) − 2 ( x 2 + 1 ) = ( x + 1 ) ( x 2 + 1 ) ( x – 1 − 2 ) = ( x + 1 ) ( x 2 + 1 ) ( x − 3 )
x^4 - 2x^3 - 2x^2 - 2x - 3
= x^4 - 1 - 2x^3 - 2x^2 - 2x -2
= ( x - 1 ) ( x + 1 ) ( x^2 + 1 ) - 2x^2 ( x + 1 ) - 2 ( x + 1 )
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2x^2 - 2 ]
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 - 2 ( x^2 - 1 ) ]
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2 ( x - 1 ) ( x + 1 ) ]
= ( x + 1 ) ( x - 1 ) [ ( x^2 + 1 ) - 2 ( x +1 )
= ( x + 1 ) ( x - 1 ) ( x^2 +1 - 2x - 2 )
= ( x + 1 ) ( x - 1 ) ( x^2 - 2x - 1 )
Phân tích các đa thức sau thành nhân tử:
d ) x 4 + 2 x 3 - 4 x – 4
d) x4 + 2x3 - 4x – 4 = (x4 – 4) + (2x3 – 4x) = (x2 – 2)(x2 + 2) + 2x(x2 – 2)
= (x2 – 2)(x2 + 2 + 2x) = (x - √2)( x + √2)( x2 + 2 + 2x)
phân tích đa thức sau thành nhân tử
e) x4 - 2x3 + x2 f) 27y3 - x3
e, x4 - 2x3 + x2
= x2( x2 - 2x + 1)
= x2 (x - 1)2
e: \(x^4-2x^3+x^2\)
\(=x^2\cdot x^2-x^2\cdot2x+x^2\cdot1\)
\(=x^2\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)^2\)
f: \(27y^3-x^3\)
\(=\left(3y\right)^3-x^3\)
\(=\left(3y-x\right)\left(9y^2+3xy+x^2\right)\)
\(e)x^4-2x^4+x^2 =x^2.x^2-2x.x^2+x^2+1 =(x^2)(x^2-2x+1) =x^2(x-1)^2 \)
\(f)27y^3-x^3 =(3y)^3-x^3 =(3y-3)(9y^2+3xy+x^2)\)