Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Nam Phương
Xem chi tiết
Hoàng Lê
Xem chi tiết
nguyễn hoàng giang
Xem chi tiết
nguyễn hoàng giang
Xem chi tiết
Phạm Thị Duyên
Xem chi tiết
Nguyễn Thị BÍch Hậu
9 tháng 6 2015 lúc 19:16

không hiểu thì hỏi, thấy đúng thì đúng nha. làm bài này mệt thấy mồ

Nguyễn Thị BÍch Hậu
9 tháng 6 2015 lúc 19:16

hoành độ giao điểm A là nghiệm của phương trình:

(3m+2)x+5=-x-1\(\Leftrightarrow3mx+2x+5+x+1=0\Leftrightarrow\left(3m+3\right)x+6=0\Leftrightarrow3\left(m+1\right)x+6=0\Leftrightarrow3\left[\left(m+1\right)x+2\right]=0\)\(\Rightarrow\left(m+1\right)x+2=0\Leftrightarrow x=-\frac{2}{m+1}\); y=-x-1 => \(y=\frac{2}{m+1}+1=\frac{m+3}{m+1}\)

\(y^2+2x-3=\left(\frac{m+3}{m+1}\right)^2-\frac{4}{m+1}-3=\frac{m^2+6m+9-4m-4}{\left(m+1\right)^2}-3=\frac{m^2+2m+5}{\left(m+1\right)^2}-3\)

\(=\frac{\left(m^2+2m+1\right)+4}{\left(m+1\right)^2}-3=\frac{\left(m+1\right)^2+4}{\left(m+1\right)^2}-3=1+\frac{4}{\left(m+1\right)^2}-3=\frac{4}{\left(m+1\right)^2}-2\ge\frac{4}{1}-2=2\)

=> Min =2 <=> m=0

Nguyễn Tâm Anh
20 tháng 5 2020 lúc 18:29

Scsdcscsdvvzssdvvds

Khách vãng lai đã xóa
Niki Rika
Xem chi tiết
ERROR
10 tháng 5 2022 lúc 5:55

refer

Minh Hồng
10 tháng 5 2022 lúc 9:36

Hai đồ thị \(y=\left(3m+2\right)x+5\) và \(y=-x-1\) cắt nhau

\(\Rightarrow3m+2\ne-1\Rightarrow m\ne-1\)

Khi đó ta có giao điểm 2 đồ thị là \(A=\left(x;y\right)=\left(x;-x-1\right)\)

\(P=y^2+2x-2019=\left(-x-1\right)^2+2x-2019=x^2+4x-2018\\ =\left(x+2\right)^2-2022\ge-2022\)

Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\Leftrightarrow y=1\)

\(\Rightarrow1=\left(3m+2\right)\left(-2\right)+5\Rightarrow-6m=0\Rightarrow m=0\left(TM\right)\)

LinhCatherine
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
Nguyễn Hoài Đức CTVVIP
29 tháng 8 2021 lúc 20:05

B ĐTHS

Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 20:33

b: Vì đồ thị hàm số y=ax+b song song với y=x-3 nên a=1

Vậy: (d): y=x+b

Thay x=1 vào y=-2x+1, ta được:

\(y=-2\cdot1+1=-1\)

Thay x=1 và y=-1 vào (d), ta được:

b+1=-1

hay b=-2

Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 21:02

a: Vì đồ thị hàm số y=ax+b song song với y=-3x nên a=-3

Vậy: (d): y=-3x+b

Thay x=0 và y=2 vào (d), ta được:

\(-3\cdot0+b=2\)

hay b=2

c: Vì (d)//y=-3x+2 nên a=-3

Vậy: (d): y=-3x+b

Thay y=2 vào y=x+1, ta được:

x+1=2

hay x=1

Thay x=1 và y=2 vào y=-3x+b, ta được:

\(-3\cdot1+b=2\)

hay b=5

Nguyễn Bạch Gia Chí
Xem chi tiết
Hồng Phúc
27 tháng 12 2020 lúc 10:05

Phương trình hoành độ giao điểm:

\(x^2+2mx-3m=-2x+3\)

\(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\)

Hai đồ thị cắt nhau tại hai điểm phân biệt A, B khi phương trình \(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2+5m+4>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -4\end{matrix}\right.\)

Phương trình có hai nghiệm phân biệt \(x=-m-1\pm\sqrt{m^2+5m+4}\)

\(x=-m-1+\sqrt{m^2+5m+4}\Rightarrow y=2m+5-2\sqrt{m^2+5m+4}\)

\(\Rightarrow A\left(-m-1+\sqrt{m^2+5m+4};2m+5-2\sqrt{m^2+5m+4}\right)\)

\(x=-m-1-\sqrt{m^2+5m+4}\Rightarrow y=2m+5+2\sqrt{m^2+5m+4}\)

\(\Rightarrow B\left(-m-1-\sqrt{m^2+5m+4};2m+5+2\sqrt{m^2+5m+4}\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-2\sqrt{m^2+5m+4};4\sqrt{m^2+5m+4}\right)\)

\(\Rightarrow AB=\sqrt{4\left(m^2+5m+4\right)+16\left(m^2+5m+4\right)}=2\sqrt{5\left(m^2+5m+4\right)}=4\sqrt{5}\)

\(\Leftrightarrow\sqrt{m^2+5m+4}=2\)

\(\Leftrightarrow m^2+5m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-5\left(tm\right)\end{matrix}\right.\)

Ngô Thành Chung
27 tháng 12 2020 lúc 10:16

Xét phương trình hoành độ giao điểm của (d): y = -2x + 3 và 

(P) : x2 + 2mx - 3m = 0

x2 + 2mx - 3m = -2x + 3 

⇔ x2 + 2(m+1) - 3(m+1) = 0 (*)

Để (d) cắt (P) taị 2 điểm phân biệt thì (*) có hai nghiệm phân biệt. Khi đó Δ' > 0 

⇔ (m+1)2 + 3(m+1) > 0

⇔ (m+1)(m+4) > 0

⇔ m ∈ R \ (-4 ; -1) (!)

Do A,B là giao điểm của (d) và (P) nên hoành độ của chúng là nghiệm của (*)

Theo định lí Viet : \(\left\{{}\begin{matrix}x_A+x_B=-2m-2=-2\left(m+1\right)\\x_A.x_B=-3m-3=-3\left(m+1\right)\end{matrix}\right.\) 

Do A,B ∈ d nên hoành độ và tung độ của chúng thỏa mãn

y = -2x + 3 hay \(\left\{{}\begin{matrix}y_A=-2x_A+3\\y_B=-2x_B+3\end{matrix}\right.\)

Để giải được bài này thì mình sẽ sử dụng công thức tính độ dài của vecto AB (nếu bạn chưa học đến thì xin lỗi)

AB = |\(\overrightarrow{AB}\)| = 4\(\sqrt{5}\)

⇒ (xA - xB)2 + (yA - yB)2 = 80

⇒ (xA - xB)2 + (-2xA + 2xB)2 = 80

Sau đó bạn thay m vào rồi biến đổi, kết quả ta được

(m+1)(m+4) = 4 \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)(thỏa mãn (!) )

Vậy tập hợp các giá trị của m thỏa mãn yêu cầu bài toán là 

M = {0 ; -5}

 

ha nguyen thi
Xem chi tiết
Le The Nam
1 tháng 8 2023 lúc 21:59

Bước 1: Tìm điểm chung của hai đồ thị y=(3m+2)⋅2+5(m≠−1) và y=−x−1:

Để điểm A(X,Y) là điểm chung của hai đồ thị, ta giải hệ phương trình:

(3m+2)⋅2+5=−X−1

=> m = -(x+10)/6

Bước 2: Tính giá trị p tại điểm A:

Ta đã biết Y=−X−1, thay vào hàm số p:

p=Y^2+2X−3

p=(−X−1)^2+2X−3

p=X^2+2X+1+2X−3

p=X^2+4X−2

Bước 3: Tìm giá trị nhỏ nhất của p:

Hàm số p=X^2+4X−2 là một hàm bậc hai, với hệ số a của X^2 là 1>0, vì vậy đồ thị của hàm số p là một đường parabol mở hướng lên. Để tìm giá trị nhỏ nhất của p, ta xác định điểm cực tiểu của đường parabol, đó là điểm mà đường cong cực tiểu nhất.

Đối với một hàm bậc hai y=ax^2+bx+c, điểm cực tiểu được xác định bởi:

Xmin​=-b/2a​

Ymin​=f(Xmin​)

Xmin​=−2

Ymin​=(−2)2+4⋅(−2)−2=0

Vậy giá trị nhỏ nhất của p là pmin​=0.

Bước 4: Tìm giá trị m tương ứng với pmin​=0:

Ta đã biết m=−(X+10)/6​, thay pmin​=0 vào đó:

0=−(Xmin​+10)/6​

=> 0=-4/3​

Điều này không thỏa mãn phương trình, vậy không có giá trị m nào khiến pmin​=0.