cho hai hàm số y = (3m + 2)x + 5 với m ≠ -1 và y = -x - 1 có đths cắt nhau tại điểm A(x;y). tìm các gt của m để P = \(y^2+2X-3\) đạt GTNN.
cho hai hàm số y=2x+m và y=x+3-m
a) với giá trị nào của m thì đths trên cắt nhau tại điểm có hoành độ x=1
help me!!!!!!!!!!
cho hai hàm số y=(3m+2) x + 5 ( m khác -1 ) và y=-x-1 có đồ thị cắt nhau tại điểm A(x;y) . Tìm các giá trị của m để biểu thức P= y2 + 2x - 3
Cho hàm số: y= ( m2 - 2)x + m+2. Tìm các giá trị của m để đths cắt đường thẳng x=1 và cắt đths y= 3x-1 tại một điểm
- giúp tớ với-
Cho hàm số: y= ( m2 - 2)x + m+2. Tìm các giá trị của m để đths cắt đường thẳng x=1 và cắt đths y= 3x-1 tại một điểm
- giúp tớ với-
cho hai hàm số y=(3m+2)x+5 (với m khác -1) và y=-x-1 có đồ thị cắt nhau tại điểm A(x;y).
Tìm các giá trị cuả m để biểu thức P= y2 + 2x - 3 đạt GTNN
không hiểu thì hỏi, thấy đúng thì đúng nha. làm bài này mệt thấy mồ
hoành độ giao điểm A là nghiệm của phương trình:
(3m+2)x+5=-x-1\(\Leftrightarrow3mx+2x+5+x+1=0\Leftrightarrow\left(3m+3\right)x+6=0\Leftrightarrow3\left(m+1\right)x+6=0\Leftrightarrow3\left[\left(m+1\right)x+2\right]=0\)\(\Rightarrow\left(m+1\right)x+2=0\Leftrightarrow x=-\frac{2}{m+1}\); y=-x-1 => \(y=\frac{2}{m+1}+1=\frac{m+3}{m+1}\)
\(y^2+2x-3=\left(\frac{m+3}{m+1}\right)^2-\frac{4}{m+1}-3=\frac{m^2+6m+9-4m-4}{\left(m+1\right)^2}-3=\frac{m^2+2m+5}{\left(m+1\right)^2}-3\)
\(=\frac{\left(m^2+2m+1\right)+4}{\left(m+1\right)^2}-3=\frac{\left(m+1\right)^2+4}{\left(m+1\right)^2}-3=1+\frac{4}{\left(m+1\right)^2}-3=\frac{4}{\left(m+1\right)^2}-2\ge\frac{4}{1}-2=2\).
=> Min =2 <=> m=0
Scsdcscsdvvzssdvvds
Cho 2 hàm số \(y=\left(3m+2\right)x+5\) với \(m\ne-1\), \(y=-x-1\) có đồ thị cắt nhau tại điểm \(A\left(x;y\right)\). Tìm các giá trị \(m\) để biểu thức \(P=y^2+2x-2019\) đạt giá trị nhỏ nhất.
Hai đồ thị \(y=\left(3m+2\right)x+5\) và \(y=-x-1\) cắt nhau
\(\Rightarrow3m+2\ne-1\Rightarrow m\ne-1\)
Khi đó ta có giao điểm 2 đồ thị là \(A=\left(x;y\right)=\left(x;-x-1\right)\)
\(P=y^2+2x-2019=\left(-x-1\right)^2+2x-2019=x^2+4x-2018\\ =\left(x+2\right)^2-2022\ge-2022\)
Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\Leftrightarrow y=1\)
\(\Rightarrow1=\left(3m+2\right)\left(-2\right)+5\Rightarrow-6m=0\Rightarrow m=0\left(TM\right)\)
Cho 2 hàm số y=(3m+2)x +5 với m khác 1 và y= -x-1 có đồ thị cắt nhau tại điểm A(x;y). Tìm các giá trị của m để biểu thức P= y2+ 2x-3 đạt giá trị nhỏ nhất
Help me! Thanks
1) Hãy xác định hàm số y=ax+b, biết:
a) ĐTHS // với đường thẳng y=-3x và cắt trục tung tại điểm có tung độ = 2
b) ____________________ y= x-3 và cắt đường thẳng y= -2x+1 tại điểm có hoành độ bằng 1
c) ĐTHS // với đường thẳng y=2-3x và cắt đường thẳng y=x+1 tại điểm có tung độ = 2
b: Vì đồ thị hàm số y=ax+b song song với y=x-3 nên a=1
Vậy: (d): y=x+b
Thay x=1 vào y=-2x+1, ta được:
\(y=-2\cdot1+1=-1\)
Thay x=1 và y=-1 vào (d), ta được:
b+1=-1
hay b=-2
a: Vì đồ thị hàm số y=ax+b song song với y=-3x nên a=-3
Vậy: (d): y=-3x+b
Thay x=0 và y=2 vào (d), ta được:
\(-3\cdot0+b=2\)
hay b=2
c: Vì (d)//y=-3x+2 nên a=-3
Vậy: (d): y=-3x+b
Thay y=2 vào y=x+1, ta được:
x+1=2
hay x=1
Thay x=1 và y=2 vào y=-3x+b, ta được:
\(-3\cdot1+b=2\)
hay b=5
Cho hàm số \(y=x^2+2mx-3m\) và hàm số \(y=-2x+3\). Tìm m để hai đồ thị đã cho cắt nhau tại hai điểm phân biệt A và B sao cho AB = \(4\sqrt{5}\)
Phương trình hoành độ giao điểm:
\(x^2+2mx-3m=-2x+3\)
\(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\)
Hai đồ thị cắt nhau tại hai điểm phân biệt A, B khi phương trình \(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\) có hai nghiệm phân biệt
\(\Leftrightarrow\Delta'=m^2+5m+4>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -4\end{matrix}\right.\)
Phương trình có hai nghiệm phân biệt \(x=-m-1\pm\sqrt{m^2+5m+4}\)
\(x=-m-1+\sqrt{m^2+5m+4}\Rightarrow y=2m+5-2\sqrt{m^2+5m+4}\)
\(\Rightarrow A\left(-m-1+\sqrt{m^2+5m+4};2m+5-2\sqrt{m^2+5m+4}\right)\)
\(x=-m-1-\sqrt{m^2+5m+4}\Rightarrow y=2m+5+2\sqrt{m^2+5m+4}\)
\(\Rightarrow B\left(-m-1-\sqrt{m^2+5m+4};2m+5+2\sqrt{m^2+5m+4}\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-2\sqrt{m^2+5m+4};4\sqrt{m^2+5m+4}\right)\)
\(\Rightarrow AB=\sqrt{4\left(m^2+5m+4\right)+16\left(m^2+5m+4\right)}=2\sqrt{5\left(m^2+5m+4\right)}=4\sqrt{5}\)
\(\Leftrightarrow\sqrt{m^2+5m+4}=2\)
\(\Leftrightarrow m^2+5m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-5\left(tm\right)\end{matrix}\right.\)
Xét phương trình hoành độ giao điểm của (d): y = -2x + 3 và
(P) : x2 + 2mx - 3m = 0
x2 + 2mx - 3m = -2x + 3
⇔ x2 + 2(m+1) - 3(m+1) = 0 (*)
Để (d) cắt (P) taị 2 điểm phân biệt thì (*) có hai nghiệm phân biệt. Khi đó Δ' > 0
⇔ (m+1)2 + 3(m+1) > 0
⇔ (m+1)(m+4) > 0
⇔ m ∈ R \ (-4 ; -1) (!)
Do A,B là giao điểm của (d) và (P) nên hoành độ của chúng là nghiệm của (*)
Theo định lí Viet : \(\left\{{}\begin{matrix}x_A+x_B=-2m-2=-2\left(m+1\right)\\x_A.x_B=-3m-3=-3\left(m+1\right)\end{matrix}\right.\)
Do A,B ∈ d nên hoành độ và tung độ của chúng thỏa mãn
y = -2x + 3 hay \(\left\{{}\begin{matrix}y_A=-2x_A+3\\y_B=-2x_B+3\end{matrix}\right.\)
Để giải được bài này thì mình sẽ sử dụng công thức tính độ dài của vecto AB (nếu bạn chưa học đến thì xin lỗi)
AB = |\(\overrightarrow{AB}\)| = 4\(\sqrt{5}\)
⇒ (xA - xB)2 + (yA - yB)2 = 80
⇒ (xA - xB)2 + (-2xA + 2xB)2 = 80
Sau đó bạn thay m vào rồi biến đổi, kết quả ta được
(m+1)(m+4) = 4 \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)(thỏa mãn (!) )
Vậy tập hợp các giá trị của m thỏa mãn yêu cầu bài toán là
M = {0 ; -5}
cho hàm số y bằng ( 3m +2 ).2 + 5 ( m khác -1 ) và y bằng -x-1 có đồ thị cắt nhau tại A(X,Y). tìm m để p bằng y^2 + 2x -3 đạt gtnn
Bước 1: Tìm điểm chung của hai đồ thị y=(3m+2)⋅2+5(m≠−1) và y=−x−1:
Để điểm A(X,Y) là điểm chung của hai đồ thị, ta giải hệ phương trình:
(3m+2)⋅2+5=−X−1
=> m = -(x+10)/6
Bước 2: Tính giá trị p tại điểm A:
Ta đã biết Y=−X−1, thay vào hàm số p:
p=Y^2+2X−3
p=(−X−1)^2+2X−3
p=X^2+2X+1+2X−3
p=X^2+4X−2
Bước 3: Tìm giá trị nhỏ nhất của p:
Hàm số p=X^2+4X−2 là một hàm bậc hai, với hệ số a của X^2 là 1>0, vì vậy đồ thị của hàm số p là một đường parabol mở hướng lên. Để tìm giá trị nhỏ nhất của p, ta xác định điểm cực tiểu của đường parabol, đó là điểm mà đường cong cực tiểu nhất.
Đối với một hàm bậc hai y=ax^2+bx+c, điểm cực tiểu được xác định bởi:
Xmin=-b/2a
Ymin=f(Xmin)
Xmin=−2
Ymin=(−2)2+4⋅(−2)−2=0
Vậy giá trị nhỏ nhất của p là pmin=0.
Bước 4: Tìm giá trị m tương ứng với pmin=0:
Ta đã biết m=−(X+10)/6, thay pmin=0 vào đó:
0=−(Xmin+10)/6
=> 0=-4/3
Điều này không thỏa mãn phương trình, vậy không có giá trị m nào khiến pmin=0.