Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thanhbinh
Xem chi tiết
ỵyjfdfj
Xem chi tiết
Nguyễn Việt Cường
Xem chi tiết
HT2k02
4 tháng 4 2021 lúc 20:06

\(A=5+4^2+...+4^{2021}\\ A=4^0+4^1+...+4^{2021}\\ 4A=4^1+4^2+...+4^{2022}\\ 4A-A=\left(4^1+4^2+...+4^{2022}\right)-\left(4^0+4^1+...+4^{2021}\right)\\ 3A=4^{2022}-1\\ 3A+1=4^{2022}⋮4^{2021}\)

Lê Khánh Vân
Xem chi tiết
Nguyễn Quang Minh
31 tháng 3 2023 lúc 21:11

Akai Haruma
13 tháng 5 2023 lúc 23:45

Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$

$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$

$3(A-1)=4^{2022}-4$

$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$ 

 

Nguyễn Ngọc Sơn
22 tháng 12 lúc 17:40

Lg:

Ta có :A=5+4^2+4^3+...+4^2020+4^2021

4A=20+4^3+4^4+...+4^2021+4^2022

4A-A=(20+4^3+4^4+...+4^2021+4^2022)-(5+4^2+4^3+...+4^2020+4^2021)

3A=4^2022-4^2+20-5

3A=4^2022-16+15

3A+1=4^2022-16+15+1

3A+1=4^2022-16+16

3A+1=4^2022⋮4^2021

Vậy 3A+1⋮4^2021

ỵyjfdfj
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Long
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 11 2021 lúc 9:21

\(A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\)

\(=36+3^2.36+...+3^{2018}.36=36\left(1+3^2+...+3^{2018}\right)⋮36\)

кαвαиє ѕнιяσ
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 11 2021 lúc 8:45

\(A=\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{2020}+3^{2021}\right)\\ A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\\ A=\left(3^2+3^3\right)\left(1+3^2+...+3^{2018}\right)\\ A=36\left(1+3^2+...+3^{2018}\right)⋮36\)

Nguyễn Anh Quân
Xem chi tiết
Đoàn Đức Hà
2 tháng 3 2021 lúc 14:43

a) \(M=2020+2020^2+...+2020^{10}\)

\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)

\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)

\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).

b) Bạn làm tương tự câu a). 

Khách vãng lai đã xóa
Nguyễn Huy Tú
2 tháng 3 2021 lúc 14:47

b, \(A=2021+2021^2+...+2021^{2020}\)

\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)

\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
Hoa Nguyễn
Xem chi tiết
VÕ THỊ HƯƠNG
29 tháng 11 2021 lúc 9:00

A=(1+3+32)+(33+34+35)+...+(32019+32020+32021)                                                  A=(1+3+32)+33.(1+3+32)+...+32019.(1+3+32)

A=13+33.13+...+32019.13

A=13.(1+33+...+32019)chia hết cho 13

=>A  chia hết cho 13