a. 2(9x + y)^2 - (3x + 2y)^2 b. 7(2x +9)^2 - (4x +3)^2 c. 5(3x +1/3) - (2x + 10)^2
thực hiện phép chia
a (4x^5-8x^3):(-2x^3)
b(9x^3-12x^2 + 3x ) : (-3x)
c (xy^2 + 4x^2y^3 -3x^2y^4):(-1/2x^2y^3)
d[2(x-y)^3-7(y-x)^2 - (y-x)] : (x-y)
e[(x^3 - y) ^5 -2(x-y)^4 + 3(x-y)^2] :[5(x-y)^2]
1, ( x+1/3)^3
2, ( 2x+y^2)^3
3, ( 1/2x^2+1/3y)^3
4, ( 3x^2-2y)^3
5, ( 2/3x^2-1/2y)^3
6, ( 2x+1/2)^3
7, ( x-3)^3
8, ( x+1).(X^2+3x+9)
9, ( x-3).( x^2+3x+9)
10, ( x-2).( x^2+2x+4)
11, ( x+4).( x^2-4x+16)
12, ( x-3y).( x^2+3xy+9y^2)
13, ( x^2-1/3). ( x^4+1/3x^2+1/9)
14, ( 1/3x+2y).( 1/9x^2-2/3xy+4y^2)
Đưa về HĐT
Bài 1: Tính giá trị:
A= x^2+4y^2-2x+10+4xy-4y tại x+2y=5
B= (x^2+4xy+4y^2)-2(x+2y)(y-1)+y^2-2y+1 tại x+y=5
C= x^2-y^2-4x tại x+y=2
D= x^2+y^2+2xy-4x-4y-3 tại x+y=4
E= 2x^6+3x^3y^3+y^6+y^3 tại x^3+y^3=1
Bài 2: Chứng minh rằng
a) -9x^2+12x-5<0
b) 4/9x^2-4x+9/2>0
Bài 3: Tìm giá trị lớn nhất:
A= 4-2x^2
B=(1-x)(2+x)(3+x)(6+x)
C=-2x^2-y^2-2xy+4x+2y+5
D=-9x^2+24x-18
E=-x^4+2x^3-3x^2+4x-1
B1: quy đồng mẫu số các phân thức:
a. 5/ 6x^2y ; 7/ 12xy^2 ; 11/ 18xy
b. 4x+2/ 15x^3y ; 5y - 3/ 9x^2y ; x+1/5xy^3
c. 3/2x ; 3x-3/2x-1 ; 3x-2/2x- 4x^2
d. x^3 + 2x / x^3+1 ; 2x/ x^2 - x +1 ; 1/ x+1
e. y/ 2x^2 - xy ; 4x/ y^2 - 2xy
f. 1/x+2 ; 3/ x^2 - 4 ; x-14/ ( x^2 + 4x + 4 ) (x-2)
g. 1/x+2 ; 1/ (x+2)(4x+7) ;
h. 1/x+3 ; 1/ (x+3)(x+2) ; 1/ (x+2)(4x+7)
B2: dùng quy tắc đổi dấu để tìm mẫu thức chung :
a.4/ x+2 ; 2/x-2 ; 5x-6/4-x^2
b. 1-3x/2x ; 3x-2/2x-1 ; 3x-2/2x-4x^2
c. 1/ x^2 + 6x + 9 ; 1/ 6x-x^2-9 ; x/ x^2 -9
d. x^2 + 2/ x^3 - 1 ; 2/ x^2 + x +1 ; 1/ 1-x
e. x/ - 2y ; x/ x+2y ; 4xy/ 4y^2 - x^2
Ai làm xong trước mình tick nha!
Thực hiện phép trừ:
a) 3/x-2-2/x+2
b) 5/2x-3 + 2/2x+3 -2x+5/9-4x^2
c) 2y - 6xy+2y/3x+2y + 2y-9x^2/3x+2y
a: \(=\dfrac{3x+6-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+10}{x^2-4}\)
b: \(=\dfrac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)
Bài 1: Thực hiện phép tính
a) (3x-1)(9x2+3x+1)-4x(x-5)
b) (7x+2)(3-4x)-(x+3)(x2-3x+9)
c) (4x+3)(4x-3)-(2-x)(4+2x+x2)
d) (3x-8)(-5x+6)-(4x+1)(3x-2)
e) (3x-6)4x-2x(3x+5)-4x2
f) (5x-6)(6x-5)-x(3x+10)
Bài 2 : Tính
a) x(x+3)-x2=6
b) 2x(x-5)+x(-2x-1)=6
c) x (x+5)-(x+1)(x-2)=7
d)(3x+4)(6x-3)-(2x+1)(9x-2)=10
1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)
\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)
\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)
\(=27x^3-4x^2+20x-1\)
b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)
\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)
\(=13x-28x^2-21-x^3\)
c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)
\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)
\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)
\(=16x^2-17+x^3\)
d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)
\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)
\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)
\(=-27x^2+63x-46\)
e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)
\(=12x^2-24x-6x^2-10x-4x^2\)
\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)
\(=2x^2-34x\)
f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)
\(=30x^2-25x-36x+30-3x^2-10x\)
\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)
\(=27x^2-71x+30\)
2) a)\(x\left(x+3\right)-x^2=6\)
\(\Rightarrow x^2+3x-x^2=6\)
\(\Rightarrow\left(x^2-x^2\right)+3x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy x=2
b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)
\(\Rightarrow2x^2-10x-2x^2-x=6\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)
\(\Rightarrow-11x=6\)
\(\Rightarrow x=-\dfrac{6}{11}\)
\(\)Vậy \(x=-\dfrac{6}{11}\)
c) x(x+5)-(x+1)(x-2)=7
\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)
\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)
\(\Rightarrow6x=5\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy x=\(\dfrac{5}{6}\)
d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)
\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)
\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)
\(\Rightarrow10x-10=10\)
\(\Rightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy x=2
Question Expandand simplify: 1. 8(x+5)-3(2x+7)
2. a(2b+c)+b(3c-2a)
3. 2y(y+5x)+x(3x+4y)
answer , 1. 8(x+5)-3(2x+7)=8x+40-6x+21=2x+61
2. a(2b+c)+b(3c-2a)=2ab+ac+3bc-2ab=ac+3bc=3abc^(2)
3. 2y(y+5x)+x(3x+4y)=2y^(2)+10xy+9x^(2)+4xy=9x^(2)+2y^(2)+14xy
a Explain what he has done wrong.
b work out the correct answer
Bài 1:Tìm GTLN: A=4-2x^2
B=(1-x)(2+x)(3+x)(6+x)
C=-2x^2-y^2-2xy+4x+2y+5
D=-9x^2+24x-18
E=-x^4+2x^3-3x^2+4x-1
Bài 2:Tính giá trị:
A=x^2+4y^2-2x+10+4xy-4y tại x+2y=5
B=(x^2+4xy+4y^2)-2(x+2y)(y-1)+y^2-2y+1 tại x+y=5
C=x^2-y^2-4x tại x+y=2
D=x^2+y^2+2xy-4x-4y-3 tại x+y=4
E=2x^6+3x^3y^3+y^6+y^3 tại x^3+y^3=1
Bài 3: CMR:
a) -9x^2+12x-5<0
b) 4/9x^2-4x+9/2>0
Bài 2:
\(A=x^2+4y^2-2x+10-4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)
\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)
\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)
\(=x^2+2xy+y^2+2x+2y+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1\)
Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)
\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)
\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)
Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)
\(D=x^2+y^2+2xy-4x-4y-3\)
\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:
\(D=4^2-4.4-3=16-16-3=-3\)
Bài 3:
a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)
\(=-\left(3x-2\right)^2-1\)
Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)
Vậy N < 0
b) ghi đề cẩn thận lại đi, mk k hiểu
Thực hiện phép chia:
a. (-2x^5+3x^2-4x^3):2x^2
b .(x^3-2x^2y+3xy^2):(-1/2x)
c. (3x^2y^2+6x^2y^3-12xy^2):3xy
d. (4x^3-3x^2y+5xy^2):0,5x
e. (18x^3y^5-9x^2y^2+6xy^2):3xy^2
f. (x^4+2x^2y^2+y^4):(x^2+y^2)
sau bạn đăng tách ra cho mn cùng giúp nhé
a, \(\left(-2x^5+3x^2-4x^3\right):2x^2=-x^3+\frac{3}{2}-2x\)
b, \(\left(x^3-2x^2y+3xy^2\right):\left(-\frac{1}{2}x\right)=-\frac{x^2}{2}+xy-\frac{3y^2}{2}\)
c, \(\left(3x^2y^2+6x^3y^3-12xy^2\right):3xy=xy+2x^2y^2-4y\)
d, \(\left(4x^3-3x^2y+5xy^2\right):\frac{1}{2}x=2x^2-\frac{3xy}{2}+\frac{5y^2}{2}\)
e, \(\left(18x^3y^5-9x^2y^2+6xy^2\right):3xy^2=6x^2y^3-3x+2\)
f, \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)=x^2+y^2\)