Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị nga
Xem chi tiết
Vy Thị Hoàng Lan ( Toán...
8 tháng 7 2019 lúc 14:17

\(A=\left(x-2\right)^2-\left(2x+1\right)^2=x^2-4x+4-4x^2-4x-1=-3x^2+3=-3\left(x^2-1\right)\)

\(=-3\left(x-1\right)\left(x+1\right)\)

\(B=\left(x-2y\right)^2-\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(x-2y-x-2y\right)=-4y\left(x-2y\right)\)

\(C=\left(x+1\right)^3-\left(x-2\right)^3=\left(x^3+3x^2+3x+1\right)-\left(x^3-6x^2+12x-8\right)\)

\(=x^3+3x^2+3x+1-x^3+6x^2-12x+8=9x^2-9x+9=9\left(x^2-x+1\right)\)

\(D=\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2=\left(x-1-x-1\right)^2=-2^2=4\)

\(E=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+2y-x=x^2+4xy+4y^2+2\left(x^2-4y^2\right)+2y-x\)

\(=x^2+4xy+4y^2+2x^2-8y^2+2y-x=3x^2-4y^2+4xy+2y-x\)

\(G=\left(2x+1\right)^3-\left(2x-1\right)=8x^3+12x^2+6x+1-2x+1=8x^3+12x^2+4x+2\)

\(=2\left(4x^3+6x^2+2x+1\right)=2\left(4x\left(x+1\right)^2+1\right)\)

Phạm Ngọc Quỳnh Hương
Xem chi tiết

A = ( x - 2 )2 - ( 2x + 1 )2 

A = x2 - 4x + 4 - 4x2 + 4x + 1 

A = - 3x2 + 5 

B = ( x - 2y )2 - ( x - 2y ) . ( 2y + x ) 

B = x2 - 4xy + 4y2 - ( 2xy + x2 - 4y2 - 2xy ) 

B = x2 - 4xy + 4y2 - 2xy - x2 + 4y2 + 2xy 

B = 8y2 - 4xy 

Dung Vu
Xem chi tiết
Bơ Ngố
2 tháng 1 2022 lúc 16:13

đáp án: a là đúng

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 11 2021 lúc 6:57

A

nguyễn thảo hân
Xem chi tiết
Sỹ Tiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 9 2023 lúc 21:01

m: (x-y)(x^2-2xy+y^2)

=(x-y)*(x-y)^2

=(x-y)^3

=x^3-3x^2y+3xy^2-y^3

n: =-(x^3+x^2y-x-x^2y-xy^2+y)

=-x^3+x+xy^2-y

o: =-(x^3+x^2y^2-x^2-2xy-2y^3+2y)

=-x^3-x^2y^2+x^2+2xy+2y^3-2y

p: (1/2x-1)(2x-3)

=1/2x*2x-1/2x*3-2x+3

=x^2-3/2x-2x+3

=x^2-7/2x+3

q: (x-1/2y)(x-1/2y)

=(x-1/2y)^2

=x^2-xy+1/4y^2

r: (x^2-2x+3)(1/2x-5)

=1/2x^3-5x^2-x^2+10x+3/2x-15

=1/2x^3-6x^2+11,5x-15

nguyễn chi
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
25 tháng 9 2020 lúc 21:12

Rút gọn hả bạn ?

( 3x - 1 )2 - 9( x - 1 )( x + 1 )

= 9x2 - 6x + 1 - 9( x2 - 1 )

= 9x2 - 6x + 1 - 9x2 + 9

= 10 - 6x

( 2x + 3 )( 2x - 3 ) - ( 2x - 1 )2 - ( x - 1 )

= 4x2 - 9 - ( 4x2 - 4x + 1 ) - x + 1

= 4x2 - x - 8 - 4x2 + 4x - 1

= 3x - 9

2( x - 2y )( x + 2y ) + ( x - 2y )2 + ( x + 2y )2

= [ ( x + 2y ) + ( x - 2y ) ]2

= [ x + 2y + x - 2y ]2

= ( 2x )2 = 4x2

Khách vãng lai đã xóa
Nguyễn Thảo Hân
Xem chi tiết
Trần Quốc Lộc
6 tháng 12 2017 lúc 17:40

Phân thức đại số

Võ Lan Nhi
Xem chi tiết
Võ Lan Nhi
29 tháng 11 2017 lúc 10:08

cho mik sửa lại câu

b) \(2y-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)

Nguyễn Nam
29 tháng 11 2017 lúc 10:32

b) \(2y-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)

\(=\dfrac{2y\left(3x+2y\right)}{3x+2y}-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)

\(=\dfrac{2y\left(3x+2y\right)-\left(6xy+2y\right)+\left(2y-9x^2\right)}{3x+2y}\)

\(=\dfrac{6xy+4y^2-6xy-2y+2y-9x^2}{3x+2y}\)

\(=\dfrac{4y^2-9x^2}{3x+2y}\)

\(=\dfrac{-\left(9x^2-4y^2\right)}{3x+2y}\)

\(=\dfrac{-\left[\left(3x\right)^2-\left(2y\right)^2\right]}{3x+2y}\)

\(=\dfrac{-\left(3x-2y\right)\left(3x+2y\right)}{3x+2y}\)

\(=-\left(3x-2y\right)\)

\(=-3x+2y\)

Nguyễn Nam
29 tháng 11 2017 lúc 10:45

a)\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{\left(1+x\right)+\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2\left(1+x^2\right)+2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4\left(1+x^4\right)}{\left(1+x^4\right)\left(1-x^4\right)}+\dfrac{4\left(1-x^4\right)}{\left(1+x^4\right)\left(1-x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4\left(1+x^4\right)+4\left(1-x^4\right)}{\left(1+x^4\right)\left(1-x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8\left(1+x^8\right)+8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\dfrac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\dfrac{16\left(1+x^{16}\right)+16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}\)

\(=\dfrac{32}{1-x^{32}}\)

Ngô Thành Chung
Xem chi tiết