(x^2+2y+1):(x+1)
Rut gon:
A=(x-2)^2-(2x+1)^2
B=(x-2y)^2-(x-2y) .(2y+x)
C=(x+1)^3-(x-2)^3
D=(x-1)^2-2(x-1)(x+1)+(x+1)^2
E=(x+2y)^2+2(x+2y)(x-2y)+(2y-x)
G=(2x+1)^3-(2x-1)
Giai het ho minh nha! Minh dang can gap
\(A=\left(x-2\right)^2-\left(2x+1\right)^2=x^2-4x+4-4x^2-4x-1=-3x^2+3=-3\left(x^2-1\right)\)
\(=-3\left(x-1\right)\left(x+1\right)\)
\(B=\left(x-2y\right)^2-\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(x-2y-x-2y\right)=-4y\left(x-2y\right)\)
\(C=\left(x+1\right)^3-\left(x-2\right)^3=\left(x^3+3x^2+3x+1\right)-\left(x^3-6x^2+12x-8\right)\)
\(=x^3+3x^2+3x+1-x^3+6x^2-12x+8=9x^2-9x+9=9\left(x^2-x+1\right)\)
\(D=\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2=\left(x-1-x-1\right)^2=-2^2=4\)
\(E=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+2y-x=x^2+4xy+4y^2+2\left(x^2-4y^2\right)+2y-x\)
\(=x^2+4xy+4y^2+2x^2-8y^2+2y-x=3x^2-4y^2+4xy+2y-x\)
\(G=\left(2x+1\right)^3-\left(2x-1\right)=8x^3+12x^2+6x+1-2x+1=8x^3+12x^2+4x+2\)
\(=2\left(4x^3+6x^2+2x+1\right)=2\left(4x\left(x+1\right)^2+1\right)\)
Rut gon:
A=(x-2)^2-(2x+1)^2
B=(x-2y)^2-(x-2y) .(2y+x)
C=(x+1)^3-(x-2)^3
D=(x-1)^2-2(x-1)(x+1)+(x+1)^2
E=(x+2y)^2+2(x+2y)(x-2y)+(2y-x)
G=(2x+1)^3-(2x-1)
Giai het ho minh nha! Cừ từ từ mik rảnh lắm!!!!!
A = ( x - 2 )2 - ( 2x + 1 )2
A = x2 - 4x + 4 - 4x2 + 4x + 1
A = - 3x2 + 5
B = ( x - 2y )2 - ( x - 2y ) . ( 2y + x )
B = x2 - 4xy + 4y2 - ( 2xy + x2 - 4y2 - 2xy )
B = x2 - 4xy + 4y2 - 2xy - x2 + 4y2 + 2xy
B = 8y2 - 4xy
phân tích đa thức \(\dfrac{1}{2}x^2-2y^2\) thành nhân tử
a. \(\dfrac{1}{2}x^2-2y^2=\dfrac{1}{2}\left(x^2-4y^2\right)=\dfrac{1}{2}\left(x-2y\right)\left(x+2y\right)\)
b. \(\dfrac{1}{2}x^2-2y^2=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\)
Cách phân tích nào đúng, a hay b ?
phân tích đa thức \(\dfrac{1}{2}x^2-2y^2\) thành nhân tử
a. \(\dfrac{1}{2}x^2-2y^2=\dfrac{1}{2}\left(x^2-4y^2\right)=\dfrac{1}{2}\left(x-2y\right)\left(x+2y\right)\)
b. \(\dfrac{1}{2}x^2-2y^2=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\)
Cách phân tích nào đúng, a hay b ?
tính :
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
2y-\(\frac{6xy+2y}{3x+2y}+\frac{2y-9x^2}{3x+2y}\)
M)(x^2-2xy+y^2)(x-y) N)-(x-y)(x^2+xy-1) Ờ)-(x^2-2y)(x+y^2-1) P)(1/2x-1)(2x-3) Q)(x-1/2y)(x-1/2y) R)(x^2-2x+3)(1/2x-5)
m: (x-y)(x^2-2xy+y^2)
=(x-y)*(x-y)^2
=(x-y)^3
=x^3-3x^2y+3xy^2-y^3
n: =-(x^3+x^2y-x-x^2y-xy^2+y)
=-x^3+x+xy^2-y
o: =-(x^3+x^2y^2-x^2-2xy-2y^3+2y)
=-x^3-x^2y^2+x^2+2xy+2y^3-2y
p: (1/2x-1)(2x-3)
=1/2x*2x-1/2x*3-2x+3
=x^2-3/2x-2x+3
=x^2-7/2x+3
q: (x-1/2y)(x-1/2y)
=(x-1/2y)^2
=x^2-xy+1/4y^2
r: (x^2-2x+3)(1/2x-5)
=1/2x^3-5x^2-x^2+10x+3/2x-15
=1/2x^3-6x^2+11,5x-15
(3x-1)tất cả mũ 2 -9(x-1)(x+1)
(2x+3) (2x-3)-(2x+1) tất cả mũ 2 – (x-1)
2(x-2y)(x+2y)+(x-2y) tất cả mũ 2+ (x+2y) tất cả mũ 2
Rút gọn hả bạn ?
( 3x - 1 )2 - 9( x - 1 )( x + 1 )
= 9x2 - 6x + 1 - 9( x2 - 1 )
= 9x2 - 6x + 1 - 9x2 + 9
= 10 - 6x
( 2x + 3 )( 2x - 3 ) - ( 2x - 1 )2 - ( x - 1 )
= 4x2 - 9 - ( 4x2 - 4x + 1 ) - x + 1
= 4x2 - x - 8 - 4x2 + 4x - 1
= 3x - 9
2( x - 2y )( x + 2y ) + ( x - 2y )2 + ( x + 2y )2
= [ ( x + 2y ) + ( x - 2y ) ]2
= [ x + 2y + x - 2y ]2
= ( 2x )2 = 4x2
tính:
a, \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
b, 2y - \(\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)
Tính
a) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
b) \(2y+\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)
cho mik sửa lại câu
b) \(2y-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)
b) \(2y-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)
\(=\dfrac{2y\left(3x+2y\right)}{3x+2y}-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)
\(=\dfrac{2y\left(3x+2y\right)-\left(6xy+2y\right)+\left(2y-9x^2\right)}{3x+2y}\)
\(=\dfrac{6xy+4y^2-6xy-2y+2y-9x^2}{3x+2y}\)
\(=\dfrac{4y^2-9x^2}{3x+2y}\)
\(=\dfrac{-\left(9x^2-4y^2\right)}{3x+2y}\)
\(=\dfrac{-\left[\left(3x\right)^2-\left(2y\right)^2\right]}{3x+2y}\)
\(=\dfrac{-\left(3x-2y\right)\left(3x+2y\right)}{3x+2y}\)
\(=-\left(3x-2y\right)\)
\(=-3x+2y\)
a)\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{\left(1+x\right)+\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2\left(1+x^2\right)+2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4\left(1+x^4\right)}{\left(1+x^4\right)\left(1-x^4\right)}+\dfrac{4\left(1-x^4\right)}{\left(1+x^4\right)\left(1-x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4\left(1+x^4\right)+4\left(1-x^4\right)}{\left(1+x^4\right)\left(1-x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8\left(1+x^8\right)+8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\dfrac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\dfrac{16\left(1+x^{16}\right)+16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}\)
\(=\dfrac{32}{1-x^{32}}\)
\(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x^2+2y^2}=x+2y+3xy\\\sqrt{y+1}+\sqrt{x^2+2y^2}=2y-x\end{matrix}\right.\)