5n:(1/5)3=125
Số tự nhiên n thỏa mãn : 5n = 125 n= 2 , n = 0 , n = 4, n=3
Tìm số tự nhiên n biết:
tìm số tự nhiên n a)625/5n=53; b)(-2n)/-128=4; c)5n=125; d)(3/7)n =81/2401 Cho biết 32<2n<512(n thuộc N) tìm giá trị của n Tìm x biết (x-1)4=161. a) 625/5n=53 => 5n=625/53=54/53=5 =>n=1
b) (-2n)/-128=4 =>-2n=4.(-128)=-2.256 =>n=256
c) (3/7)n=81/2401=(3/7)4 => n=4
2. 32<2n<512
<=> 25<2n<29
=> n=6;7;8
3. (x-1)4=16=24 => x-1=2 =>x=3
1) Tìm n để 5n-2 chia hết 2n+1
2) a) x15=x b)(2x+1)3+125 c)(x-5)4=(x-5)
a) X12=x
=> x \(\in\){-1;0;1}
b) (2x+1)3=125=53
2x+1=5
x= (5-1):2
x=2
c) (x-5)4=(x-5)
Từ a => x-5 \(\in\){-1;0;1)
TH1: x-5 = -1
x=4
TH2: x-5=0
x=5
TH3: x-5=1
x=6
Vậy x \(\in\){4;5;6}
CMR:
(5n)^100 chia hết cho 125
Xét: (5n)^4 chia hết cho 125
=> (5n)^(4.25)=(5n)^100 chia hết cho 125
(5n)^100 = (5n)^3 . (5n)^97 = 125 . n^3 . (5n)^97
mà 125 chia hết cho 125 nên 125 . n^3 . (5n)?^97 chia hết cho 125 hay (5n)^100 chia hết cho 125
CMR: (5n)100 chia hết cho 125
(5n)100=5100.n100=53.597.n100=125.597.n100 chia hết cho 125
Chứng minh rằng: (5n)100 chia hết cho 125.
(5n)100=5100.n100=53.597.n100=125.597.n100 chia hết cho 125
chứng minh vs mọi số tự nhiên n khác 0 ta có
5/3*7+5/7*11+...+5/(4n-1)*(4n+3) = 5n/3*(4n+3)
chứng minh vs mọi số tự nhiên n, n lớn hơn 2 ta có
3/9*14+3/14*19+...+3/(5n-1)*(5n+4) <1/15
Câu 1:
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)
Câu 2:
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)
cmr: (5n)^100 chia hết cho 125 (với mọi n thuộc N)
(5n)^100=(5n)^4.25=(5n^25)^4=625.x^100 chia hết cho 125 vì 625 chia hết cho 125
CMR: (5n)100 chia hết cho 125
(5n)100 = 5100 X n100
Ta có: 125 = 53
ta có : 5100 chia hết cho 53
=> (5n)100 chia hết cho 125
(5n)100=5100.n100=53.597.n100=125.597.n100
=>(5n)100 chia hết cho 125 (dpcm)
(5n)100= 5100. n100=597. 53 . n100=597. 125. n100 chia hết cho 125
Váy (5n)100 chia hết cho 125
( dau . là dấu nhân nha bạn)
Bài 6: Tìm giá trị nguyên của n để :
1) 3n^3 +10n^2 - 5 chia hết cho 3n+1
2) 4n^3 +11n^2 +5n+ 5 chia hết cho n+2
3) n^3 - 4n^2 +5n -1 chia hết cho n-3
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)