Cho Δ vuông ABC (∠A = 1v). Từ trung điểm D của AB kẻ DE ⊥ BC.
Chứng minh: EC2 - EB2 = AC2
cho ΔABC vuông tại A có đường cao AH.Gọi D là trung điểm của AC; vẽ DE vuông góc với BC tại E
chứng minh: EB2 - EC2 =AB2
Xét ΔCED vuông tại E có \(EC^2+ED^2=CD^2\)
=>\(EC^2=CD^2-ED^2\)
Xét ΔEDB vuông tại E có \(EB^2+ED^2=BD^2\)
=>\(EB^2=BD^2-ED^2\)
Xét ΔDAB vuông tại A có \(DA^2+AB^2=DB^2\)
=>\(EB^2=BD^2-ED^2=DA^2+AB^2-ED^2\)
\(EB^2-EC^2\)
\(=DA^2+AB^2-ED^2-CD^2+ED^2\)
\(=AB^2+CD^2-CD^2=AB^2\)
Cho tam giác ABC vuông tại A,đường cao AH Gọi D và E lần lượt là chân đường vuông góc kẻ từ H đến AB và AC.Gọi M là trung điểm của BC.Chứng minh AM vuông góc với DE
cho tam giác vuông ABC vuông cân tại A,biết AB=AC=4cm
a)tính BC
b)từ A kẻ AD vuông góc BC.chứng minh D là trung điểm của BC
c)từ D kẻ DE vuông góc AC.chứng minh tam giác AED là tam giác vuông cân
d)tính độ dài AD
Giải
a) Áp dụng định lí Pytago ta có:
BC=√AB2+AC2
<=> BC= √42+42
<=>BC=4√2(cm)
b) Ta có: AD là đường cao đồng thời là đường trung tuyến ứng với cạnh huyền BC của tam giác ABC
<=>DB=DC
Hay D là trung điểm của BC
c) Áp dụng hệ thức lượng trog tam giác có:
AB.AC=BC,AD
<=>4.4=4√2.AD
<=>AD= 2√2(cm)
Ta có: DC=4√22=2√2(cm)
Vì AD=DC nên tam giác ADC là tam giác vuông cân tại D
Ta có: AC=4(cm) (Áp dụng định lí Pytago trong tam giác ADC)
AE= 42=2(cm) (DE là đường cao đồng thời là trung tuyến của tam giác ADC)
Áp dụng hệ thức lượng ta có: DE=2√2.2√24=2(cm)
Do AE=DE mà góc AED bằng 90 độ
Nên tam giác AED vuông cân tại E
d) Câu trên tớ đã tính AD= 2√2(cm)
Mình giải hơi tắt 1 tí. Bạn thông cảm nhé. :)))
Giải
a) Áp dụng định lí Pytago ta có:
BC=AB2+AC2−−−−−−−−−−√
<=> BC= 42+42−−−−−−√
<=>BC=42–√
(cm)
b) Ta có: AD là đường cao đồng thời là đường trung tuyến ứng với cạnh huyền BC của tam giác ABC
<=>DB=DC
Hay D là trung điểm của BC
c) Áp dụng hệ thức lượng trog tam giác có:
AB.AC=BC,AD
<=>4.4=42–√
.AD
<=>AD= 22–√
(cm)
Ta có: DC=42√2
=22–√
(cm)
Vì AD=DC nên tam giác ADC là tam giác vuông cân tại D
Ta có: AC=4(cm) (Áp dụng định lí Pytago trong tam giác ADC)
AE= 42
=2(cm) (DE là đường cao đồng thời là trung tuyến của tam giác ADC)
Áp dụng hệ thức lượng ta có: DE=22√.22√4
=2(cm)
Do AE=DE mà góc AED bằng 90 độ
Nên tam giác AED vuông cân tại E
Cho tam giác ABC vuông tại A, đường cao AH. D và E là chân đường vuông góc kẻ từ H xuống AB và AC.M là trung điểm BC.Chứng minh : AM vuông góc với DE
Bạ xem bài làm của bạn Nguyễn Võ Thảo Vy ở đường link sau:
Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath
TL
Bn xem bài của Nguyễn Thảo Vy ở quản lí đã đưa ra nha
Hok tốt nghen
Nhớ k mik nha
Gửi bạn tham khảo nhé
Cho ΔABC vẽ AD ⊥ BC, E là điểm tùy ý thuộc đoạn AD.
Chứng minh rằng AB2 – AC2 = EB2 – EC2.
\(AB^2-AC^2=AD^2+DB^2-AC^2-DC^2=DB^2-DC^2\)
\(EB^2-EC^2=ED^2+DB^2-ED^2-DC^2=DB^2-DC^2\)
Do đó: \(AB^2-AC^2=EB^2-EC^2\)
Cho Δ ABC vuông tại A . Trên tia đối của CA lấy điểm D sao cho Có là trung điểm của AD. Qua D kẻ đường thẳng vuông góc với AD cắt đường thẳng BC tại E.
a. Chứng minh: AB // DE
Cho tam giác ABC vuông tai A Phân giác BD kẻ DE vuông góc BC tai E,F là giao điểm của 2 đường thẳng DE và AB
1,chứng minh AB=EB
2, chứng minh tam giác ADF=EDC
Cho tam giác ABC vuông tại A,đường cao AH Gọi D và E lần lượt là chân đường vuông góc kẻ từ H đến AB và AC.Gọi M là trung điểm của BC.Chứng minh AM vuông góc với DE
Cho Δ ABC có góc A<90 độ,về phía ngoài ΔABC dựng tia Ax vuông góc AB,Ay vuông góc AC.Lấy điểm D trên tia Ax sao cho AD=AB,lấy điểm E trên tia Ay sao cho AE=AC.
a)Chứng minh:ΔADC=ΔABE và CD vuông góc BE.
b)Gọi M là trung điểm của BC.Chứng minh:AM=1/2DEvà AM vuông góc DE.
c)Vẽ AH vuông góc BC,đường thảng AH cắt DE ở K.Chứng minh DK=KE.