Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm; đường phân giác BD
(Dϵ AC). Kẻ DE vuông góc với BC ( Eϵ BC). Gọi F là giao điểm của BA và ED.
a) Tính BC.
b) Chứng minh △ABD = △EBD.
c) Chứng minh BD là đường trung trực của AE.
d) Tính AF và chứng minh AD< DC.
giúp mình với các tình yêu mình cần gấp
Cho Δ ABC vuông tại A có BD là phân giác của \(\widehat{ABC}\) (D∈AC). Kẻ DE ⊥ BC (E∈BC). Gọi F là giao điểm của BA và ED.
a) Chứng minh Δ ABD = Δ EBD
b) Chứng minh AD < DC
c) Chứng minh \(\widehat{ADF}=2\widehat{ABD}\)
Cho tam giác ABC vuông tại A. Kẻ phân giác BE của góc ABC (E AC). Trên BC lấy điểm D sao cho AB = BD. a)Chứng minh ΔABE = ΔDBE ; BC ⏊ ED b)Kéo dài DE cắt đường thẳng AB tại M. Chứng minh BM = BC c)Gọi N là trung điểm của MC. Chứng minh ba điểm B; E; N thẳng hàng.
c4
cho Tam Giác ABC(góc A =90 độ) ; BD là phân giác của góc B(D thuộc AC).trên tia BC lấy điểm E sao cho BA =BE
a)Chứng Minhtam giác BAD = T gác BED => DE Vuông góc BE
b) Chứng Minh BD là Đường trung trực của AE
c)Kẻ AH vuông góc vs BC.So sánh EH và EC
Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E. a) Cho biết AB = 3 cm AC = 4 cm .Tính BC b) Chứng minh BD là đường trung trực của AE c) Chứng minh rằng DA < DC d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
Cho tam giác ABC cân tại B ( góc B = 90° ) Kẻ AD vuông góc với BC, CE vuông góc vs AB ( D thuộc cạnh BC , E thuộc cạch AB ) a) Chứng minh ∆ BAD = ∆ BCE b) Gọi F là giao điểm của AD và CE. chứng minh BF là tia phân giác của góc ABC c) chứng minh FA > AC/2
Cho tam giác abc có góc A bằng 90 độ, AB = 6cm AC=8cm kẻ tia phân giác BD (D thuộc AC) kẻ DE vuông góc với BC
a. Tính BC, BE
b. Chứng minh BD là trung trực của AE
c. ED cắt BA tại M. chứng minh tam giác MBC cân
d. Gọi I là trung điểm MC. Chứng minh BDI thẳng hàng( cần gấp)
e. Chứng minh BD > AD
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:
a) Tam giác ABD = Tam giác EBD và DE vuông góc BC
b) BD là đường trung trực của đoạn thẳng AE
c) Ba điểm D; E; F thẳng hàng
d) Điểm D cách đều ba cạnh của tam giác AEI
cho ABC (A=90 độ) BD là tia phân giác của góc B (D thuộc AB). trên tia BC lấy điểm E sao cho BA=BE: a) chứng minh DE vuông góc với BE ;b) chứng minh BD là đường trung trực của AE ;c) kẻ AH vuông góc BC, so sánh EH và EC