so sánh 32 mũ 124 và 64 mũ 100
so sánh
643 và 32 mũ 5
16 mũ 5 và 64 mũ 2
81 mũ 9 và 625 mũ4
so sánh A=64 mũ 11 nhân 16 mũ 11 và 32 mũ 17 nhân 8 mũ 19
DIỄN GIẢI RA CÁC BẠN NHÉ
Đặt B =\(32^{17}.8^{19}\)
So sánh :\(A=64^{11}.16^{11}\)và \(B=32^{17}.8^{19}\)
TA có :\(A=64^{11}.16^{11}=\left(64.16\right)^{11}=1024^{11}=\left(2^{10}\right)^{11}\)\(=2^{110}\)
\(B=32^{17}.8^{19}=\left(2^5\right)^{17}.\left(2^3\right)^{19}=2^{85}.2^{57}\)\(=2^{142}\)
VÌ A < B ( 2110< 2142)
Nên A < 3217.819
64 mũ 15 và 32 mũ 18 so sánh , giải chi tiết giúp mình nha .Thank you very much
Ta có:
6415 = (26)15 = 290
3218 = (25)18 = 290
Vì 290 = 290
=> 6415 = 3218
so sánh
32 mũ 15 và 64 mũ 9
mk cần gấp nhé
ta có
32^15 = (2^5)^15=2^75
64^9 = (2^6)^9 = 2^54
vì 2^75 > 2^54 nên 32^15 >64^9
3215 = (82)15 : (23)5 = 830 : 85 = 825
649 = (82)9 = 818
Vì 825 > 818 nên 3215 > 649
Ta có:
3215 = (25)15 = 275
649 = (26)9 = 254
=> 275 > 254 => 3215 > 649
k mk nha
#goodmood
1.a)So sánh 2 số sau : 32 mũ 13 và 64 mũ 10
b)Tính tổng A=2+2.2+2.2.2+2.2.2.2+...+2.2.2.2.2....2 (100 số 2)
Bạn nào trả lời đúng (ghi cách làm) thì mình sẽ tick cho :D
a)
Ta có : \(32^{13}=\left(2^5\right)^{13}=2^{65}\)
\(64^{10}=\left(2^6\right)^{10}=2^{60}\)
Mà \(2^{65}>2^{60}\Rightarrow.....\)
b)
A = 2 + 2.2 + 2.2.2 + ... + 2.2.2.2....2
A = \(2+2^2+2^3+...+2^{100}\)
2A = \(2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
1.
a) Ta có : 3213 = ( 25 ) 13 = 265
6410 = ( 26 ) 10 = 260
Vì 265 > 260 nên 3213 > 6410
b) A = 2 + 2.2 + 2.2.2 + 2.2.2.2 + ... + 2.2.2.2.2...2 ( 100 số 2 )
A = 2 . ( 1 + 2 + 2.2 + 2.2.2 + ... + 2.2.2.2...2 )
A = 2. ( 1 + 2 + 22 + 23 + ... + 299 )
gọi B là biểu thức trong ngoặc
Lại có : B = 1 + 2 + 22 + 23 + ... + 299
2B = 2 + 22 + 23 + 24 + ... + 2100
2B - B = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + ... + 299 )
B = 2100 - 1
\(\Rightarrow\)A = 2 . ( 2100 - 1 )
\(\Rightarrow\)A = 2101 - 2
a)Ta có: 6410=(32x2)10=322x10=3220
mà 3220 > 3213
nên 3220 < 6410
b) A = 2+2.2+2.2.2+2.2.2.2+...+2.2.2.2.2...2(100 số 2)
2 A = 2.[ 2+2.2+2.2.2+2.2.2.2+...+2.2.2.2.2...2(100 số 2)]
2 A = 2.2+2.2.2+2.2.2.2+2.2.2.2.2+...+2.2.2.2.2...2.2(101 số 2)
2 A - A = 2.2.2.2.2...2.2(101 số 2) - 2
A = 2101 - 2
Bài 1:So sánh hai lũy thừa sau:
a) 31 mũ 11 và 17 mũ 14
b) 25 mũ 16 và 125 mũ 10
c)32 mũ 18 và 64 mũ 12
Bài 2:Tính tổng
C =1+4+4 mũ 2+4 mũ 3+.....+4 mũ 98
11 mũ 21+1 : 11 = 121
4 mũ 2x+1=64
So sánh
10 mũ 30 và 2 mũ 100
2 mũ 98 và 9 mũ 42
Giúp mk nha😭😭😭👿
Để tớ ghi đề giùm cho các bạn hiểu :
\(11^{21}+1\div11=121\)
\(4^{2x}+1=64\)
So sánh
\(10^{30}...2^{100}\)
\(2^{98}...9^{42}\)
bài 1
42x+1 = 64
=> 42x+1 = 43
=> 2x + 1 = 3
=> 2x = 2
=> x = 1
bài 2
1030 = ( 103 )10 = 100010
2100 = ( 210 )10 = 102410
=> 100010 < 102410
=> 1030 < 2100
298 = ( 27 )14 = 12814
942 = ( 93 )14 = 72914
=> 12814 < 72914
=> 298 < 942
Bài 1:Rút gọn
a)M=1+5+5 mũ 2+...+5 mũ 100
b)N=2+2 mũ 2+...+2 mũ 100
Bài 2:So sánh
a)16 mũ 32 và 32 mũ 16
b)(1+2+3+4)mũ 2 và 1 mũ 2+2 mũ 2+3 mũ 2+4 mũ 2
giúp mình nhanh nha,ai đúng mình sẽ tick!
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
so sánh 8 mũ 5 và 8 mũ 3 nhân 64 mũ 2
so sánh mà ko tính giá trị
a) 64 mũ 150 và 4 mũ 450
b) 81 mũ 64 và 27 mũ 100
c) 125 mũ 1000 và 25 mũ 3000
d) 4 mũ 30 và 3 mũ 40
m) 2 mũ 5000 và 5 mũ 2000
h) 6 mũ 450 và 3 mũ 750
0) 333 mũ 444 và 444 mũ 333
`#3107.101107`
a)
`64^150` và `4^450`
Ta có:
`64^150 = (4^3)^150 = 4^(3*150) = 4^450`
Vì `450 = 450 => 4^450 = 4^450 => 64^150 = 4^450`
Vậy, `64^150 = 4^450`
b)
`81^64` và `27^100`
Ta có:
`81^64 = (3^4)^64 = 3^(4*64) = 3^256`
`27^100 = (3^3)^100 = 3^(3*100) = 3^300`
Vì `256 < 300 => 3^256 < 3^300 => 81^64 < 27^100`
Vậy, `81^64 < 27^100`
c)
`125^1000` và `25^3000`
Ta có:
`125^1000 = (5^3)^1000 = 5^(3*1000) = 5^3000`
Vì `5 < 25 => 5^3000 < 25^3000 => 125^1000 < 25^3000`
Vậy, `125^1000 < 25^3000`
d)
`4^30` và `3^40`
Ta có:
`4^30 = 4^(3*10) = (4^3)^10 = 64^10`
`3^40 = 3^(4*10) = (3^4)^10 = 81^10`
Vì `64 < 81 => 64^10 < 81^10 => 4^30 < 3^40`
Vậy, `4^30 < 3^40`
m)
`2^5000` và `5^2000`
Ta có:
`2^5000 = 2^(5*1000) = (2^5)^1000 = 32^1000`
`5^2000 = 5^(2*1000) = (5^2)^1000 = 25^1000`
Vì `32 > 25 => 32^1000 > 25^1000 => 2^5000 > 5^2000`
Vậy, `2^5000 > 5^2000`
h)
`6^450` và `3^750`
Ta có:
`6^450 = 6^(150*3) = (6^3)^150 = 216^150`
`3^750 = 3^(150*5) = (3^5)^150 = 243^150`
Vì `216 < 243 => 216^150 < 243^150 => 6^450 < 3^750`
Vậy, `6^450 < 3^750`
0)
`333^444` và `444^333`
Ta có:
`333^444 = 333^(4*111) = (333^4)^111 = (3^4 *111^4)^111 = 81^111 * 111^444`
`444^333 = 444^(3*111) = (444^3)^111 = (4^3 * 111^3)^111 = 64^111 * 111^333`
Vì `81 > 64;` `111^444 > 111^333`
`=> 81^111 * 111^444 > 64^111 * 111^333`
Vậy, `333^444 > 444^333.`
a) Ta có:
\(64^{150}=\left(2^6\right)^{150}=2^{900}\)
\(4^{450}=\left(2^2\right)^{450}=2^{900}\)
Mà: \(2^{900}=2^{900}\Rightarrow64^{150}=4^{450}\)
b) Ta có:
\(81^{64}=\left(3^4\right)^{64}=3^{256}\)
\(27^{100}=\left(3^3\right)^{100}=3^{300}\)
Mà: \(3^{300}>3^{256}\Rightarrow27^{100}>81^{64}\)
c) Ta có:
\(125^{1000}=\left(5^3\right)^{1000}=5^{3000}\)
Mà: \(25^{3000}>5^{3000}\Rightarrow25^{3000}>125^{1000}\)
d) Ta có:
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
\(3^{40}=\left(3^4\right)^{10}=81^{10}\)
Mà: \(81^{10}>64^{10}\Rightarrow3^{40}>4^{30}\)
m) Ta có:
\(2^{5000}=\left(2^5\right)^{1000}=32^{1000}\)
\(5^{2000}=\left(5^2\right)^{1000}=25^{1000}\)
Mà: \(25^{1000}< 32^{1000}\Rightarrow2^{5000}>5^{2000}\)
h) Ta có:
\(6^{450}=\left(6^3\right)^{150}=216^{150}\)
\(3^{750}=\left(3^5\right)^{150}=243^{150}\)
Mà: \(243^{150}>216^{150}\Rightarrow3^{750}>6^{450}\)
....
a) 4⁴⁵⁰ = (4³)¹⁵⁰ = 64¹⁵⁰
b) 81⁶⁴ = (3⁴)⁶⁴ = 3²⁵⁶
27¹⁰⁰ = (3³)¹⁰⁰ = 3³⁰⁰
Do 256 < 300 nên 3²⁵⁶ < 3³⁰⁰
Vậy 81⁶⁴ < 27¹⁰⁰
c) 125¹⁰⁰⁰ = (5³)¹⁰⁰⁰ = 5³⁰⁰⁰
Do 5 < 25 nên 5³⁰⁰⁰ < 25³⁰⁰⁰
Vậy 125¹⁰⁰⁰ < 25³⁰⁰⁰
d) 4³⁰ = (4³)¹⁰ = 64¹⁰
3⁴⁰ = (3⁴)¹⁰ = 81¹⁰
Do 64 < 81 nên 64¹⁰ < 81¹⁰
Vậy 4³⁰ < 3⁴⁰
m) 2⁵⁰⁰⁰ = (2⁵)¹⁰⁰⁰ = 32¹⁰⁰⁰
5²⁰⁰⁰ = (5²)¹⁰⁰⁰ = 25¹⁰⁰⁰
Do 32 > 25 nên 32¹⁰⁰⁰ > 25¹⁰⁰⁰
Vậy 2⁵⁰⁰⁰ > 5²⁰⁰⁰
h) 6⁴⁵⁰ = (6³)¹⁵⁰ = 216¹⁵⁰
3⁷⁵⁰ = (3⁵)¹⁵⁰ = 243¹⁵⁰
Do 216 < 243 nên 216¹⁵⁰ < 243¹⁵⁰
Vậy 6⁴⁵⁰ < 3⁷⁵⁰
o) 333⁴⁴⁴ = (333⁴)¹¹¹ = [(3.111)⁴]¹¹¹ = (3⁴.111⁴)¹¹¹ = (81.111⁴)¹¹¹
444³³³ = (444³)¹¹¹ = [(4.111)³]¹¹¹
= (4³.111³)¹¹¹ = (64.111³)¹¹¹
Do 81 > 64 ⇒ 81.111⁴ > 64.111⁴ (1)
Do 4 > 3 ⇒ 64.111⁴ > 64.111³ (2)
Từ (1) và (2) ⇒ 81.111⁴ > 64.111³
⇒ (81.111⁴)¹¹¹ > (64.111³)¹¹¹
Vậy 333⁴⁴⁴ > 444³³³