Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thanh Tùng
Xem chi tiết
Tôi là gió
Xem chi tiết
Vũ Ngọc
Xem chi tiết
Akai Haruma
17 tháng 9 2021 lúc 8:59

a. Xét $x\in A\cap (B\cup C)$

$\Rightarrow x\in A$ và $x\in B\cup C$

\(\Rightarrow \left\{\begin{matrix} x\in A\\ \left[\begin{matrix} x\in B\\ x\in C\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\in A\\ x\in B\end{matrix}\right.\\ \left\{\begin{matrix} x\in A\\ x\in C\end{matrix}\right.\end{matrix}\right.\Rightarrow x\in (A\cap B)\cup (A\cap C)(*)\)

Xét $x\in (A\cap B)\cup (A\cap C)$

$\Rightarrow x\in A\cap B$ hoặc $x\in A\cap C$

$\Rightarrow x\in A$ và $x\in B$ hoặc $x\in C$

Tức là: $x\in A\cap (B\cup C)(**)$

Từ $(*); (**)$ suy ra $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$

Akai Haruma
17 tháng 9 2021 lúc 9:11

b. Xét $x\in (A\setminus B)\setminus C$ bất kỳ

$\Rightarrow x\in A$ và $x\not\in B, x\not\in C$

Vì $x\in A, x\not\in C$ nên $x\in A\setminus C$

Do đó: $(A\setminus B)\setminus C\subset A\setminus C$

trang thu
Xem chi tiết
Vũ Thanh Tùng
Xem chi tiết
Nguyễn Minh Quang
23 tháng 10 2021 lúc 23:11

ta có :

undefined

Khách vãng lai đã xóa
Linh Chi Đỗ
Xem chi tiết
Susi Candy น่ารัก
Xem chi tiết
Vy Vân Khanh
20 tháng 10 2021 lúc 21:41

(A\(\cup\)B)\C 

GIẢ SỬ x\(\in\)C THÌ x\(\notin\)(A\(\cup\)B); x\(\notin\)(A\(\cup\)B) THÌ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\in A\\x\notin B\end{matrix}\right.\\\left\{{}\begin{matrix}x\notin A\\x\in B\end{matrix}\right.\end{matrix}\right.\)

 

Nguyen tran Trung
Xem chi tiết
Nguyen tran Trung
30 tháng 8 2017 lúc 17:11

mọi người giúp mình với

Vy Vân Khanh
20 tháng 10 2021 lúc 21:31

(A\(\cap\)B)\(\cup\)A=A

(A\(\cap\)B)\(\cup\)A = (A\(\cup\)A)\(\)\(\cap\) (A\(\cup\)B) = A \(\cap\)(A\(\cup\)B) = A

 

Song Hoàng Việt
Xem chi tiết
린 린
12 tháng 8 2019 lúc 11:08

https://lazi.vn/edu/exercise/cho-cac-tap-hop-a-b-va-c-cmr-abc-abac

A vao day tham khao nhe !

~G#2k5~

Vy Vân Khanh
20 tháng 10 2021 lúc 21:21

\(A\backslash\left(B\cap C\right)=A\B\)\(\cup A\C\)

\(\left[{}\begin{matrix}x\in A\\\left\{{}\begin{matrix}x\in B\\x\in C\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\in A\\x\notin B\end{matrix}\right.\\\left\{{}\begin{matrix}x\in A\\x\notin C\end{matrix}\right.\end{matrix}\right.\)