chứng minh rằng
S=2+25+29+213+...+237+241+245 chia hết cho 17
Tổng các chữ số của số tự nhiên a kí hiệu là S(a).Chứng minh rằngS(a)=S(2a) thì a chia hết cho 9.
Chứng minh: 2^17+2^14 chia hết cho 9
Chứng minh 15^3-25^2 chia hết cho 11
Ta có: \(2^{17}+2^{14}\)
\(=2^{14}\left(2^3+1\right)=2^{14}\times9⋮9\)
\(15^3-25^2\)
\(=3^3.5^3-5^4\)
\(=5^3\left(27-5\right)=5^3.2.11⋮11\)
\(2^{17}+2^{14}=2^{14}\left(2^3+1\right)=2^{14}\cdot9\Rightarrow2^{17}+2^{14}⋮9\)
\(15^3-25^2=3^3\cdot5^3-5^4=5^3\left(3^3-5\right)=5^3\cdot22=5^3\cdot11\cdot2\Rightarrow15^3-25^2⋮11\)
Câu 1
A = (x+2017).(x+2018).Chứng tỏ rằng A luôn chia hết cho2
Câu 2
Cho C=3^10+3^11+3^12+...+3^16+3^17. Chứng minh rằng C chia hết cho 40
Câu 3
D= 4^25+4^26+4^27+...=4^29+4^30. Chứng minh rằng D chia hết cho 273
Câu 2:
\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)
\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)
\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)
\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)
\(C=3^{10}.40+3^{14}.40.\)
\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)
\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)
1)
+Nếu x lẻ thì x+2017 là chẵn \(⋮2\)
+Nếu x là chẵn thì x+2018 cũng là chãn \(⋮2\)
\(\Rightarrow dpcm\)
Chứng minh với mọi a,b,c,d,x,y thuộc N,ta có:
a, abcd chia hết cho 29 <=>a+3b+9c+27d chia hết cho 29
b, 2x+3y chia hết cho 17 <=>9x+5y chia hết cho 17
Ta phân tích các số ra bao quát hệ cơ số 10 :
abcd = a x 1000 + b x 100 + c x 10 + d
nếu ta thấy có thể gộp lại như sau :
abcd = cd x 290 thì chắc chắn là abcd chia hết cho 29
Vậy a + 3b + 9c + 27d chắc chắn cũng chia hết cho 29
b ) Tương tự cách lí luận câu a
Chứng minh rằng :
a) S1=2+2^2+2^3+.........+2^99+2^100 chia hết cho 31
b) S2=16^5+2^15 chia hết cho 33
c) 53!-51! chia hết cho 29
d) 43^43-17^17 chia hết cho 10
e) 5^n+2+26.5^n +8^2n+1 chia hết cho 59
Bài 1: Chứng minh rằng:
a) 165+ 215 chia hết cho 33
b) 88+ 220 chia hết cho 17
c) 4343 - 1717 chia hết cho 10
d) 1 - 2 + 22 - 23 + 24 - 25 + 26 - ... - 22021 + 22022 chia 6 dư 1
Bài 2: Chứng minh rằng:
a) \(\overline{aaa}\) ⋮ 37 b) (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
a, \(\overline{aaa}\) \(⋮\) 37
\(\overline{aaa}\) = a x 111 = a x 3 x 37 ⋮ 37 (đpcm)
b, (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11
\(\overline{ab}\) + \(\overline{ba}\) = \(\overline{a0}\) + b + \(\overline{b0}\) + a = \(\overline{aa}\) + \(\overline{bb}\) = a x 11 + b x 11 = 11 x (a+b)⋮11
\(18^{50}+24^{17}\cdot3^{80}\) chứng minh chia hết cho 29
386.4125103 đúng không ta
kéo xuống nha
AI QUÊ HÀ NAM KO T_T HIHI
Chứng minh rằng:
a) 1+3+32+33+...+3119 chia hết cho 13
b) 82+220 chia hết cho 17
c) 1028+8 chia hết cho 72
d) abcd chia hết cho 29
<=> a+3b+9c+27d chia hết cho 29
1. Cho 3.a +2.b chia hết cho 17
chứng minh rằng : 10.a +b chia hết cho 17
2.Cho a = 5.b chia hết cho 17
chứng minh rằng: 10.a +b chia hết cho 17
Chứng minh rằng
S \(=1+2+2^2+2^3+...+2^{25}+2^{29}\)
a)Chia hết cho cho 7
b)Chia hết cho 5
c)Chia hết cho 15
d)Chia hết cho 21
e)chia hết cho 3