Rút gọn biểu thức: \(\frac{x^2+x-6}{x^3-4x^2-18x+9}\)
Rút gọn biểu thức:
\(\frac{x^2+x-6}{x^3-4x^2-18x+9}\)
\(\frac{x^2+x-6}{x^3-4x^2-18x+9}=\frac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)
\(=\frac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)
\(=\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x^2-7x+3\right)}=\frac{x-2}{x^2-7x+3}\) (điều kiện: x khác -3)
t phân tích \(x^2-7x+3\) được như này =))
\(x^2-7x+3=x^2-2.x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\frac{49}{4}+3\)
\(=\left(x-\frac{7}{2}\right)^2-\frac{37}{4}\)
\(=\left(x-\frac{7}{2}\right)^2-\left(\frac{\sqrt{37}}{2}\right)^2\)
\(=\left(x-\frac{7}{2}-\frac{\sqrt{37}}{2}\right)\left(x-\frac{7}{2}+\frac{\sqrt{37}}{2}\right)\)
\(=\left(x-\frac{7+\sqrt{37}}{2}\right)\left(x-\frac{7-\sqrt{37}}{2}\right)\)
\(\frac{x^2+x-6}{x^3-4x^2-18x+9}\)\(=\frac{x^2+3x-2x-6}{x^2+3x^2-7x^2-21x+3x+9}\)
\(=\frac{x\left(x+3\right)-2\left(x+3\right)}{\left(x^3+3x^2\right)-\left(7x^2+21x\right)+\left(3x+9\right)}\)
\(=\frac{\left(x+3\right)\left(x-2\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)
\(=\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x^2-7x+3\right)}\)
\(=\frac{x-2}{x^2-7x+3}\)
Xong rồi phân tích \(x^2-7x+3\) nữa thì phải =))
rút gọn biểu thức\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}\)
Ta có :
\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}=\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x+3\right)\left(x^2-7x+3\right)}=\dfrac{x-2}{x^2-7x+3}\)
Rút gọn biểu thức:
A=x(x+y)2-x(x-y). B=(2x-3)(4x2+6x+9)-(2x+3)(4x2-6x+9)(x+3)3-(x-3)3-18x2-18A = x(x + y)2 - x(x - y)
= x[(x + y)2 - (x - y)]
B = (2x - 3)(4x2 + 6x + 9) - (2x + 3)(4x2 - 6x + 9)
= 8x3 - 27 - 8x3 - 27
= - 54
C = (x + 3)3 - (x - 3)3 - 18x2 - 18
= x3 + 9x2 + 27x + 27 - x3 + 9x2 - 27x + 27 - 18x2 - 18
= 36
rút gọn biểu thức
a)x(x-2)(x+2)+(x+3)(x^2-3x+9)
b)(3x+2)^2-18x(3x+2)+(x-1)^3-28x^3+3x(x-1)
Rút gọn biểu thức sau: A=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+4\right)\left(3-x\right)}\)
Cho biểu thức P = (x + 1)/(x + 3) - (x + 2)/(x - 3) - (4x + 6)/(9 - x ^ 2)
aTìm ĐKXĐ của P
b. Rút gọn P
a: ĐKXĐ: \(x\notin\left\{-3;3\right\}\)
b: \(P=\dfrac{x^2-2x-3-x^2-5x-6+4x+6}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-3x-3}{\left(x-3\right)\left(x+3\right)}\)
Rút gọn biểu thức:
\(\frac{x^2+x-6}{x^3-4x^2-12x+19}\)
Rút gọn biểu thức \(A=\frac{4x}{x^2+2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\frac{4x}{x^2-2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\frac{4x}{x\left(x-2\right)}-\frac{3}{x-2}+\frac{12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x\left(x+2\right)-3x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+2x+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+14x}{x\left(x-2\right)\left(x+2\right)}\)