Ta có :
\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}=\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x+3\right)\left(x^2-7x+3\right)}=\dfrac{x-2}{x^2-7x+3}\)
Ta có :
\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}=\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x+3\right)\left(x^2-7x+3\right)}=\dfrac{x-2}{x^2-7x+3}\)
cho biểu thức P=\(\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)
a.với đkxđ của P:x\(\ne\pm1;\)x\(\ne\pm3\). hãy rút gọn biểu thức P
b.tính giá trị của biểu thức P biết x^2-9=0
c.tìm các giá trị nguyên của x để P nhận giá trị nguyên
1. Phân tích đa thức thành nhân tử
(a - b) (5x + 3) + 2(a - b)
2. Thực hiện phép tính
a) 3x2 (x - 1)
b) (2x + 3)2 - 4 (x - 3) (x + 3)
3. Rút gọn biểu thức
B= \(\dfrac{2X^3-4X^2+2X}{3X^2-3X}\)
Cho biểu thức : P= ( x - 1 )^2 - 4x ( x + 1 ) ( x - 1 ) + 3 a/ Rút gọn biểu thức b/ Tính giá trị biểu thức với x = -2
cho biểu thức:
A=(\(\dfrac{2+x}{2-x}\)-\(\dfrac{2-x}{2+x}\)-\(\dfrac{4}{x-2}\).\(\dfrac{x^2}{x+2}\)) : \(\dfrac{x-1}{2x-x^2}\)
a) Hãy tìm điều kiện của x để giá trị của biểu thức được xác định?
b) Rút gọn biểu thức?
cho biểu thức A=\(\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) (với x ≠+-2)
a) rút gọn A
b)chứng tỏ rằng với mọi x thõa mãn -2<x<2, x≠-1 biểu thức A luôn có giá trị âm
A=\(\dfrac{4x^2+\left(2x+3\right)\left(x+1\right)-9}{9x^2-4}\)
a) Rút gọn A
b) Tìm các số nguyên x để A đạt giá trị nguyên
Rút gọn biểu thức : \(B=\dfrac{2}{x^2+2x}+\dfrac{3}{x^2+7x+10}+\dfrac{4}{x^2+14x+15}+\dfrac{1}{x+9}\)
Cho biểu thức: B=\(\dfrac{\left|x+10\right|}{x^4+9x^3-9x^2+9x-10}\)
a) Tìm điều kiện có nghĩa của B
b) Rút gọn B
cho biểu thức: A= (\(\dfrac{x+2}{x-3}\)+\(\dfrac{5}{x+3}\)).(\(\dfrac{2x\left(x^2-9\right)}{x^2+10x-9}\))
a, Tìm x để giá trị của biểu thức A được xác định
b, Rút gọn biểu thức A
c, Tính giá trị của A tại x=\(\dfrac{1}{2}\)