Cho x/a = y/b= z/c khác 0
RG
M=((x^2+y^2+z^2)(a^2+b^2+c^2))/(ax+by+cz)^2
Cho x/a=y/b=z/c khác 0.Rút gọn biểu thức ( x^2+y^2+z^2)(a^2+b^2+c^2)/(ax+by+cz)^2.
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{c}{z}=k\ne0\) thì \(x=ak;y=bk;z=ck.\)
Do đó : \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)
\(=\frac{k^2\left(a^2+b^2+c^2\right)^2}{k^2\left(a^2+b^2+c^2\right)^2}=1.\)
chứng minh nếu (a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2 với x,y,z khác 0 thì a/x=b/y=c/z
Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.
Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath
cho x/a = y/b = z/c khác 0 khi đó giá trị của (x^2+y^2+z^2)(a^2+b^2+c^2)/ ax^2+by^2+cz^2 bằng
Chứng minh rằng nếu ( a^2 + b^2 + c^2 ).( x^2 + y^2 + z^2 ) = ( ax + by + cz ) ^2 với x,y,z khác 0
thì a / x = b / y = c / z
nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0
CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)
cho 2a=by+cz ; 2b=ax+cz ;2c=ax+by và a+b+c khác 0
Tính M=1/(x+2) + 1/(y+2) + 1/(z+2) = ?
Có nhiều cách làm bài này.
Có \(2a+2b+2c=by+cz+a.x+cz+a.x+by\)
\(2\left(a+b+c\right)=2\left(a.x+by+cz\right)\)
\(\Rightarrow a+b+c=a.x+by+cz\)
\(a+b+c=a.x+\left(by+cz\right)=a.x+2.a=a\left(x+2\right)\)\(\Rightarrow\frac{1}{x+2}=\frac{a}{a+b+c}\)
\(a+b+c=\left(a.x+by\right)+cz=2c+cz=c\left(z+2\right)\)\(\Rightarrow\frac{1}{z+2}=\frac{c}{a+b+c}\)
\(a+b+c=by+\left(a.x+cz\right)=by+2b=b\left(y+2\right)\)\(\Rightarrow\frac{1}{y+2}=\frac{b}{a+b+c}\)
\(\Rightarrow M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{a+b+c}{a+b+c}=1\)
Vậy ...
1.Cho x=by+cz,y=ax+cz,z=ax+by,x+y+z khác 0.Tính:
Q=\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{c}\)
2.Cho a+b+c=0.C/m:\(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)\)
3.Cho x+y+z=0.C/m:\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
4.Cho a,b,c đôi một khác nhau và khác 0 thỏa mãn:\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
C/m:abc=1 hoặc abc=-1
5.Cho x+y+xy=3,yz+y+z=8,xz+x+z=15.Tính x+y+z
6. Cho xy+x+y=-1 ;\(x^2y+xy^2=-12\)
Tính P=\(x^3+y^3\)
7.Cho a,b,c khác 0:\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
C/m:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
cho x,y,z khác 0 và a,b,c >0 thỏa mãn:
ax+by+cz=0;và a+b+c=2017
tính giá trị biểu thức:
P=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Cho \(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\) với x, y, z thuộc Z và x, y, z khác 0. Chứng minh:\(ax+by+cz⋮x+y+z\); a, b, c, d là các số nguyên khác nhau
\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\) \(\Rightarrow ax+by+cz=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮\left(x+y+z\right)\)
Cho a,b,c,x,y,z khác 0 thỏa mãn x/a=y/b=z/c
Chứng minh rằng: x^2+y^2+z^2/ (ax+by+cz)^2=1/a^2+b^2+c^2
giúp mìk với nha mọi người
cái này là bđt bunhia thì fai bn mở sách ra tham khảo đi