Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mon an
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2023 lúc 22:34

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔMAB=ΔMEC

b: ΔMAB=ΔMEC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

c: AB//EC

AB\(\perp\)AC

Do đó: EC\(\perp\)AC tại C

Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)

MC=MB

Do đó: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BE

AC//BE

AC\(\perp\)CE

Do đó: BE\(\perp\)CE

=>ΔBEC vuông tại E

Lê Ngọc Anh Khôi
Xem chi tiết
Phan Huy Bằng
7 tháng 1 2022 lúc 19:46

vẽ hình ; bạn tự vẽ nha

a) Xét tam giác MAB và tam giác MEC

có AM =ME

 BM=MC

góc AMB=gócBME

 vạy tam giác MAB=tam giác MEC.(c.g.c)

b) vì tam giác AMC=tam giác MEC

=> góc EAC= góc EAC

=>AC//BE

c) Tam giác AMB=tam giác CME=>gócABC = gócBCE

=>Tam giác IMB =tam giác CMK(c.g.c)

=>góc IMB= góc CMK

T/C  BMI+IMC=180

=>góc CMK +IMC=180

=>IMK=180

Vậy  I,M,K thẳng hàng

bảo ngọc nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 12 2021 lúc 20:57

b: Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AC//BE

hà samla
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2022 lúc 15:21

a: Xét ΔAMB và ΔEMC có 

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔAMB=ΔEMC

b: Ta có: ΔAMB=ΔEMC

nên \(\widehat{MAB}=\widehat{MEC}\)

c: Xét tứ giác ABEC có 

M là trung điểm của AE
M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//CE

Thủy Phạm
Xem chi tiết
Luong Duong
28 tháng 12 2021 lúc 21:10

undefined

Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 21:56

2: Xét ΔMAB và ΔMEC có 

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔMAB=ΔMEC

quyen pham
Xem chi tiết
Tô Mì
8 tháng 12 2021 lúc 12:06

a/  Xét △ABM và △DMC có:

\(\begin{matrix}AM=MD\left(gt\right)\\MB=MC\left(gt\right)\\\hat{AMB}=\hat{CMD}\left(đối\text{ }đỉnh\right)\end{matrix}\)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\) (đpcm).

b/ Ta có: \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\Rightarrow\hat{MAB}=\hat{MDC}\); hai góc ở vị trí so le trong.

Vậy: AB // CD (đpcm).

c/ Xét △BAE có:

\(\begin{matrix}BH\perp AE\left(gt\right)\\AH=HE\left(gt\right)\end{matrix}\)

⇒ BH vừa là đường cao, vừa là đường trung tuyến.

⇒ △BAE cân tại B.

\(\Rightarrow BE=BA\). Mà \(AB=CD\left(\Delta AMB=\Delta DMC\right)\)

Vậy: BE = CD (đpcm).

Nguyễn Tiến Minh
Xem chi tiết
Khanh Linh Ha
Xem chi tiết
Gia Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 10:26

a: Xét ΔMAB và ΔMDC có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: BA=DC; AC=DB

Xét ΔBAC và ΔCDB có 

BA=CD

AC=DB

BC chung

Do đó: ΔBAC=ΔCDB

c: Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

Suy ra: AD và FE cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của AD

nên M là trung điểm của FE

hay F,M,E thẳng hàng