Cho tam giác ABC. Gọi M là trung điểm của canh BC, Trên tia đối của tia MA lấy điểm D sao cho MD- MA a. Chứng minh tam giác MAB = tam giác MDC b. Chứng minh: tam giác BAC= tam giác CDB c. Trên đoạn thẳng AB và CD lần lượt lấy các điểm E và F sao cho AE = DF. Chứng minh rằng ba điểm E, M, F thẳng hàng.
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: BA=DC; AC=DB
Xét ΔBAC và ΔCDB có
BA=CD
AC=DB
BC chung
Do đó: ΔBAC=ΔCDB
c: Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
Suy ra: AD và FE cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AD
nên M là trung điểm của FE
hay F,M,E thẳng hàng