Áp dụng hằng đẳng thức:
\(x^2-y^2=...\)
\(\left(a+b\right)^2=....\)
ai k mk mk k lại
Hãy nêu ra những điểm khác và giống nhau của 2 đẳng thức :
\(6\div2\left(1+2\right)\)và\(6\div\left(1+2\right)\times2\)
AI K MK MK K LẠI CHO
Giống: Cả hai đều có số giống nhau
Khác: Một bên là chia 2 nhân 3
Một bên là chia 3 nhân 2
Giống: các số đều giống nhau
Khác: vế 1 là : 2 x 3 còn vế 2 là :3x2
K mk nha, mk k lại cho
ko đón tiếp mời đi cho tui k lần 1 rùi ko có lần 2 đâu..........
Giải thích hộ mk chỗ (*)này:
\(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3\)
\(=\left(x^2-y^2\right)[\left(x^2\right)^2+xy+\left(y^2\right)^2]\)(Đây là hằng đẳng thức số 7)
=\(\left(x^2-y^2\right)\left(x^4+xy+y^4\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^4+y^4+xy\right)\)(Bước này khai triển hằng đẳng thức số 3 trong(x^2-y^2)
\(=\left(x^2+y^2\right)^2-2x^2y^2+x^2y^2\)(*)(Chỗ này giải thích hộ mk với)
\(=\left(x^2+y^2\right)^2-\left(xy\right)^2=\left(x^2+xy+y^2\right)\left(x^2+y^2-xy\right)\)(Đây là hằng đẳng thức số 3)
Vậy giúp mk nha, cảm ơn trước!
Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng
x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)
Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.
Áp dụng hằng đẳng thức, khai triển các biểu thức sau:
a, \(\left(2x+y+3\right)^2\)
b, \(\left(x-2y+1\right)^2\)
c, \(\left(x^2-2xy^2-3\right)^2\)
\(a,\left(2x+y+3\right)^2=4x^2+y^2+9+4xy+12x+6y\)
\(b,\left(x-2y+1\right)^2=x^2+4y^2+1-4xy+2x-4y\)
\(c,\left(x^2-2xy^2-3\right)^2=x^4+2x^2y^4+9-4x^3y^2-6x^2+12xy^2\)
Áp dụng bằng hằng đẳng thức đáng nhớ để thực hiện phép chia :
a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)
b) \(\left(125x^3+1\right):\left(5x+1\right)\)
c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
Bài giải:
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
a) (x2 +2xy + y2 ) : (x +y)
= (x +y)2 : (x +y)
= x + y
b) (125x3 + 1) : (5x + 1)
= (5x + 1)(25x2 - 5x + 1) : (5x + 1)
= 25x2 - 5x + 1
c) \(\left(x^2-2xy+y^2\right)\left(y-x\right)\)
= \(\left(x-y\right)^2:\left(y-x\right)\)
= \(x-y\)
CMR: \(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-\left(a+b\right)\left(b+c\right)-\left(b+c\right)\left(c+a\right)-\left(a+b\right)\left(c+a\right)=a^2+b^2+c^2-ab-bc-ca\)
Bài này mk cần một cách làm sử dụng hằng đẳng thức hoặc một cách làm thông minh chứ không phải là phân tích hết ra từng cái vd (a+b)^2=a^2+2ab+b^2 r cộng lại. Có cho phép sử dụng phân tích nhưng không phải là kiểu phân tích từ đầu tức là phân tích từng cái như mình đã nói ở trên
AI GIẢI ĐƯỢC MK SẼ TÍCH CHO 3 TÍCH. CẢM ƠN RẤT NHIỀU
Đặt \(\hept{\begin{cases}a+b=m\\b+c=n\\c+a=p\end{cases}}\)
Xem VT = A
\(\Rightarrow A=m^2+n^2+p^2-mn-np-mp\)
\(2A=\left(m-n\right)^2+\left(n-p\right)^2+\left(p-m\right)^2\)
\(=\left(a+b-b-c\right)^2+\left(b+c-c-a\right)^2+\left(c+a-a-b\right)^2\)
\(=\left(a-c\right)^2+\left(b-a\right)^2+\left(c-b\right)^2\)
\(=a^2-2ac+c^2+b^2-2ab+a^2+c^2-2bc+b^2\)
\(=2\left(a^2+b^2+c^2-2ab-2bc-2ac\right)\)
\(\Rightarrow A=a^2+b^2+c^2-ab-bc-ca\)(đpcm)
tính: \(\left(2a-b\right)^2-2\times\left(2a-b\right)\times\left(a+b\right)+\left(a+b\right)^2\)
ÁP DỤNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
(2a-b)2 - 2 x ( 2a-b) x (a+b) + (a + b)2
= [(2a-b) - (a+b)]2
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(2x^2-1\right)^2\)
b, \(\left(\dfrac{1}{2}x+3y^2\right)^2\)
a) \(\left(2x^2-1\right)^2=\left(2x^2\right)^2-2.2x^2.1+1^2\)
\(=4x^4-4x^2+1\).
b) \(\left(\frac{1}{2}x+3y^2\right)^2=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.3y^2+\left(3y^2\right)^2\)
\(=\frac{1}{4}x^2+3y^2x+9y^4\)
Chúc bn hc tốt!
tính :\(\left(x+2\right)^2\)
áp dụng hằng đẳng thức
Với hai số a, b bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức bình phương của một tổng để tính \({\left( {a - b} \right)^2}\).
\({\left( {a - b} \right)^2} = {\left[ {a + \left( { - b} \right)} \right]^2} = {a^2} + 2.a.\left( { - b} \right) + {\left( { - b} \right)^2} = {a^2} - 2.ab + {b^2}\)