cho 8x^2 +y^2 +1/4x^2=4 .Tìm GTLN,GTNN của A= xy+1/2
a) cho x,y thỏa mãn 8x^2+y^2+1/4x^2=4
tìm x,y để xy đạt GTNN, GTLN.
b) tìm x,y nguyên 3xy+x+y=17
Cho các số x,y thỏa mãn đẳng thức \(8x^2+y^2+\dfrac{1}{4x^2}=4\). Tìm GTLN, GTNN của biểu thức P = xy
a) cho x,y thỏa mãn 8x^2+y^2+1/4x^2=4
tìm x,y để xy đạt GTNN, GTLN.
b) tìm x,y nguyên 3xy+x+y=17
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Tim GTNN cua bieu thuc : B=x^2+xy+y^2-2x-3y+2019
Tìm GTNN , GTLn của biểu thức : A=\(\frac{8x+3}{4x^2+1}\)
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
Bài 1:
a, Tìm GTNN của A = \(4x^2+4x+11\)
b, Tìm GTLN của B = \(5-8x-x^2\)
I zì:vv
a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)
Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)
b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Vậy MaxB=21 khi x=-4
Cho các số x,y thỏa mãn đẳng thức \(8x^2+y^2+\dfrac{1}{4x^2}=4\). Tìm GTLN, GTNN của biểu thức P = xy
Giúp tí.
\(8x^2+\dfrac{1}{4x^2}+y^2-4=0\)
\(\left(\left(2\sqrt{2}x\right)-\dfrac{\sqrt{2}}{2}.\dfrac{1}{x}\right)^2+y^2=0\)
Cần y=0 => P=0
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2
cho \(8x^2+y^2+\dfrac{1}{4y^2}=4\)
tìm GTLN, GTNN : xy+5