Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc tấn đoàn
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2021 lúc 21:55

a.

\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)

\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)

\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)

b.

Đặt \(x-1=t\Rightarrow x=t+1\)

\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)

\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)

Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 21:59

\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Dấu \("="\Leftrightarrow x=2\)

Nguyễn Minh	Vũ
Xem chi tiết
Darlingg🥝
13 tháng 12 2021 lúc 11:41

\(\frac{3x^2-8x+6}{x^2-2x+1}\)

=\(\frac{2x^2-x^2-4x-4x+2+4}{x^2-2x+1}\)

=\(\frac{\left(2x^2-4x+2\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)

=\(\frac{2\left(x^2-2x+1\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)

=\(2+\frac{x^2-4x+4}{\left(x-1\right)^2}\)

=\(2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\) 

Vì \(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)  với mọi x

<=>\(2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\) > 2 với mọi x

Dấu "=" xảy ra khi và chỉ khi x=-2 thì Min =2

Vậy Min=2

Khách vãng lai đã xóa
Nguyễn Nhã Linh
Xem chi tiết
huong nguyen
Xem chi tiết
Vo Ngoc Bao Trinh
Xem chi tiết
hya_seije_jaumeniz
25 tháng 7 2018 lúc 17:24

a) Đặt  \(A=-x^2+9x-12\)

\(-A=x^2-9x+12\)

\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)

\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)

Mà  \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Vậy  \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)

b) Đặt \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge-\frac{29}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)

hya_seije_jaumeniz
25 tháng 7 2018 lúc 17:30

c) Đặt  \(C=\left(2x+6\right)\left(x-1\right)\)

\(C=2x^2-2x+6x-6\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x+1\right)-8\)

\(C=2\left(x+1\right)^2-8\)

Mà  \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-8\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(C_{Min}=-8\Leftrightarrow x=-1\)

d) Đặt  \(D=3x-2x^2\)

\(-2D=4x^2-6x\)

\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)

\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-2D\ge-\frac{9}{4}\)

\(\Leftrightarrow D\le\frac{9}{8}\)

Dấu "=" xảy ra khi :  \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy  \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)

huyền
Xem chi tiết
hh hh
Xem chi tiết
alibaba nguyễn
16 tháng 1 2017 lúc 14:54

Ta có:

\(A=\frac{3x^2-8x+6}{x^2-2x+1}\)

\(\Leftrightarrow A\left(x^2-2x+1\right)=3x^2-8x+6\)

\(\Leftrightarrow\left(3-A\right)x^2+\left(2A-8\right)x+6-A=0\)

Đê pt theo nghiệm x có nghiệm thì

\(\Delta'=\left(A-4\right)^2-\left(3-A\right)\left(6-A\right)\ge0\)

\(\Leftrightarrow A-2\ge0\)

\(\Leftrightarrow A\ge2\)

Vậy GTNN là 2 khi x = 2

Phan Huy Toàn
29 tháng 7 2017 lúc 16:03

x=2

lời giải mk đang làm

Nguyễn Minh	Vũ
13 tháng 12 2021 lúc 11:12

bn giải cách lớp 8 đi

Khách vãng lai đã xóa
Trafalgar
Xem chi tiết
Thư Nguyễn Anh
Xem chi tiết
Lấp La Lấp Lánh
29 tháng 8 2021 lúc 10:02

\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)

Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)

\(ĐTXR\Leftrightarrow x=1\)