tìm n thuộc N* thỏa mãn n3-n2+n-1 là số nguyên tố
tìm n thuộc N để n3+n2-n+2 là số nguyên tố
Tìm n ∈ N * sao cho : n3 – n2 + n – 1 là số nguyên tố
Ta có :
Nếu n = 1 suy ra A = 0
Nếu n = 2 suy ra A = 5 là số nguyên tố
Nếu n>2 thì A là tích của hai thừa số mà mỗi thừa số đều lớn hơn hai . Vậy A là hợp số
Vậy để A = n3 – n2 + n – 1 là số nguyên tố thì n = 2.
Tìm Tìm số tự nhiên n để :
A=n3-n2+n-1 là số nguyên tố.
Tìm số tự nhiên n để p là số nguyên tố biết : n3-n2+n-1
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2
Bài 1: Tìm n thuộc N* sao cho n3 - n2 + n - 1 là số tự nhiên
Bài 2: C/m nếu 2n - 1 (n > 2) là số nguyên tố thì 2n + 1 là hợp số
Bài 3: Cho m và m2 + 2 là số nguyên tố. C/m m3 + 2 cùng là số nguyên tố
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
3 ,
Giải:
Với m=2 thì m2+2=4+2= 6 là hợp số (loại)
Với m=3 thì m2+2 = 9+2= 11 (thoải mãn)
Với m= 3k+1 ( với k ẻ N) thì: m2+2 = (3k+1)2 +2 = 3(3k2+2k+1) là hợp số ( loại)
Với m= 3k+2 thì: m2+2= (3k+2)2 +2 = 3(3k2+4k+2) là hợp số (loại)
Vậy với m= 3 thì m và m2+2 là số nguyên tố. Khi đó m3+ 2= 33+2 = 29 là số nguyên tố.
Tìm n thuộc N thỏa mãn :(n+3).(n+1) là số nguyên tố
Bg
Ta có: (n + 3)(n + 1) (n \(\inℕ\))
Xét giá trị n = 0
=> (n + 3)(n + 1) = 3.1 = 3 (thỏa mãn điều kiện đề bài là số nguyên tố)
Xét giá trị n > 0:
Gọi các số nguyên tố đó là y (y \(\inℕ^∗\))
=> Phân tích ra thừa số nguyên tố thì y = x.1 (với x = y)
Vì n > 0
Nên n + 3 \(\ne\)1 và n + 1 \(\ne\)1 (số đó là x.1 mà không có số 1 nào hết)
=> Không có giá trị nào phù hợp.
Vậy chỉ có n = 0 thì (n + 3)(n + 1) là số nguyên tố
Vì (n+3)(n+1) là số nguyên tố.
Mà:\(\text{(n+3)(n+1)}⋮1;n+1;n+3;\left(n+1\right)\left(n+3\right)\)
=> n+1 hoặc n+3 bằng 1.
Mà n+3 >1
=> n+1=1 =>n=0
Vậy n=0
Tích cho mik nha!!!
Tìm n thuộc số nguyên thỏa mãn: n2+2n-1 ⋮ 3n-1
giúp mình với!
cho p là một số nguyên tố. n thuộc N, n≥1. Tìm x, y thuộc N thỏa mãn x(x+1)=p^(2n)y(y+1)
Tìm n thuộc N thỏa mãn n; n+2; n+6 đều là số nguyên tố?