Hãy tìm các số thực a, b biết f(x) = 8x^4 - 9x^3 + a^2 + 33x - 18 chia hết cho g(x) = x^2 - 2x + b
1/Tìm x, biết
a)2x^2+3x=5
b)7x-5x^2-3=0
2/Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau:
a) A=2x^2-8x-10
b)9x=3x^2
3/Cho đa thức f(x)=x^3-5x^2+ax+b. Tìm a, b để f(x) chia hết cho g(x)=x^2-1
My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé
https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N
Hahahahahahhahagagagahahahahahahahahayahahahahahahaha
Bài 1 xác định các số hữu tỉ ab
a, 10x2 - 7x + a chia hết 2x-3
b, x2-8x+a chia hết x-1
c, 2x3-x2+ax+b chai hết x2-1
bài 2 : tìm số nguyên x để giá trị đa thức f(x) chia hết cho giá trị của đa thức g(x)
a, f(x)= 2x2-x+2 và g(x)=2x+1
1. Thực hiện phép chia :
\((x^5+x^4-15x^5-5x^2+34x+24):(x^2+5x+4)\)
2. Tính các giá trị a, b để :
a, \(f(x)=x^3+ax^2+bx-60\) chia hết cho \(g(x)=x^2+9x+20\)
b, \(f(x)=x^3+5x^2-8x+a\) chia hết cho \(g(x)=x^2+x+6\)
Bài 2:
\(g\left(x\right)=x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Để \(f\left(x\right)=x^3+ax^2+bx-60\) chia hết cho \(g\left(x\right)=\left(x+4\right)\left(x+5\right)\) thì
\(\left\{{}\begin{matrix}f\left(-4\right)=0\\f\left(-5\right)=0\end{matrix}\right.\)
Với \(f\left(-4\right)\) ta có:
\(f\left(-4\right)=-64+16a-4b-60=0\)
\(\Leftrightarrow16a-4b=124\)
(1)
Với \(f\left(-5\right)\) , ta có:
\(f\left(-5\right)=-125+25a-5b-60=0\)
\(\Leftrightarrow25a-5b=185\)(2)
Từ (1) và (2) , ta có:
\(\left\{{}\begin{matrix}16a-4b=124\\25a-5b=185\end{matrix}\right.\)
Giải hệ ta được :
\(\left\{{}\begin{matrix}a=6\\b=-7\end{matrix}\right.\)
p/s: Lm xog chả bk mk lm cái zề nữa
T.Thùy Ninh
Theo bài toán:
\(x^2+5x+4=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\)\(x^5+x^4-15x^3-5x^2+34x+24\)
\(=x^5+x^4-15x^3-15x^2+10x^2+10x^2+24x+24\)\(=x^4\left(x+1\right)-15x^2\left(x+1\right)+10x\left(x+1\right)+24\left(x+1\right)\)\(=\left(x+1\right)\left(x^4-15x^2+10x+24\right)\)
Ta có:
\(\dfrac{\left(x^5+x^4-15x^3-5x^2+34x+24\right)}{x^2+5x+4}\)
\(=\dfrac{\left(x+1\right)\left(x^4+15x^2+10x+24\right)}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^4+15x^2+10+24}{x+4}\) \(=\dfrac{x^4+4x^3-4x^3-16x^2+x^2+4x+6x+24}{x+4}\) \(=\dfrac{x^3\left(x+4\right)-4x^2\left(x+4\right)+x\left(x+4\right)+6\left(x+4\right)}{x+4}\)
\(=\dfrac{\left(x+4\right)\left(x^3-4x^2+x+6\right)}{x+4}\)
\(=x^3-4x^2+x+6\)
p/s : ko bk đúng kh nữa . Định chia theo cách bình thường nhưng lười lấy giấy ra rồi chụp ảnh nên lm theo cách này. Sai thôg cảm nha
Bài 3: Tìm x để f(x) chia hết cho g(x) biết a) f(x)=x² -2x² + x+3; g(x) = x-1 b) f(x) =-2x +x +3x-4; g(x) = x+2
a: \(\Leftrightarrow x^3-x^2-x^2+x+3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{-1;1;3;-3\right\}\)
hay \(x\in\left\{0;2;4;-2\right\}\)
Cho 2 đa thức f(x)=\(x^4-9x^3+21x^2+x+a\) và g(x)=\(x^2-x-2\)
a)Cho a =-100,tìm dư của phép chia đa thức f(x) và g(x)
b)Tìm a để f(x) chia hết cho g(x)
Giải chi tiết hộ mình nhé thanks
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
tìm a,b để đa thức f(x) chia hết cho g(x)
F(x)=x^4-9x^3+21x^2+ax+b
G(x)=x^2-x-2
tìm a và b để đa thức f(x) chia hết cho g(x) biết: f(x)=x^4+x^3+ax^2+4x+b và g(x)=x^2-2x+2
Lời giải:
$f(x)=x^4+x^3+ax^2+4x+b=x^2(x^2-2x+2)+3x(x^2-2x+2)+(a+4)x^2-2x+b$
$=(x^2+3x)(x^2-2x+2)+(a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)g(x)+2(a+3)x-2(a+4)+b$
Để $f(x)\vdots g(x)$ thì:
$2(a+3)x-2(a+4)+b=0,\forall x$
$\Rightarrow a+3=-2(a+4)+b=0$
$\Rightarrow a=-3; b=2$
f(x)=3x^4-12x^2+ax^2-6x+3b
g(x)=x^2-4x+3
h(x)=2x^4-20x^2+18
a) Tìm x để h(x)/g(x)=48
b) Xác định a và b để f(x) chia hết cho g(x)
Tìm các hệ số a,b để đa thức f(x)=3x4+ax3+9x2+bx+16 chia hết cho đa thức g(x)=x2-5x+2. Khi đó a+b=...