Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thảo Nguyên
Xem chi tiết
Mars
Xem chi tiết
Bùi Đức Lộc
16 tháng 12 2017 lúc 14:48

Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath

Nhớ xem và !

Nguyễn Đức Trường
16 tháng 12 2017 lúc 14:51

a, 24 và 10

b, 6 và 30

c, 6 và 36

d, <không có trường hợp nào>

e, 36 và 6

Chúc bạn học giỏi !

<Lưu ý : Bạn xem lại câu d>

Dư Thị Khánh Hòa
20 tháng 12 2017 lúc 20:49

d) Do (a,b) = 5 => a = 5m

                              b = 5n

                ( m,n ) = 1

a : b = 2,6 => a/b = 13/5 = 5m/5n => m = 13 ; n =5

=> a = 65                b = 25

Tran Thi Ngoc Lan
Xem chi tiết
Trần Quốc Đạt
25 tháng 12 2016 lúc 8:57

Cả câu a lẫn câu b đều không tồn tại nha bạn.

Câu a: \(a,b\) cùng chia hết cho 6 nên \(ab\) chia hết cho 36 (vô lí)

Câu b: \(a,b\) cùng chia hết cho 60 nên \(ab\) chia hết cho 3600 (vô lí)

Cũng có cách giải khác như sau:

Áp dụng định lí: \(ab=gcd\left(a,b\right)\times lcm\left(a,b\right)\)

Câu a: \(ab\) không chia hết cho \(gcd\left(a,b\right)\) nên vô lí.

Câu b: \(lcm\left(a,b\right)=3< gcd\left(a,b\right)\) nên cũng vô lí nốt.

minh anh
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
Ngọc Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 19:39

\(a\cdot b=ƯCLN\left(a,b\right)\cdot BCNN\left(a,b\right)=6\cdot180=1080\)

ƯCLN(a,b)=6 nên \(\left\{{}\begin{matrix}a=6k\\b=6c\end{matrix}\right.\)

a*b=1080

=>6k*6c=1080

=>k*c=1080/36=30

=>(k,c)\(\in\){(1;30);(30;1);(-1;-30);(-30;-1);(2;15);(15;2);(-2;-15);(-15;-2);(3;10);(10;3);(-3;-10);(-10;-3);(5;6);(6;5);(-5;-6);(-6;-5)}

=>(a,b)\(\in\){(6;180);(180;6);(-6;-180);(-180;-6);(12;90);(90;12);(-12;-90);(-90;-12);(18;60);(60;18);(-18;-60);(-60;-18);(30;36);(36;30);(-30;-36);(-36;-30)}

34 Bolu
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 10 2021 lúc 11:01

\(a,ƯCLN\left(a,b\right)=15\\ \Rightarrow a=15k;b=15q\left(k,q\in N\right)\\ \Rightarrow15k+15q=180\\ \Rightarrow k+q=12\)

Mà \(\left(k;q\right)=1\) và \(k;q\in N\) nên \(k+q=1+11=7+5\)

Vì \(a< b\Rightarrow k< q\Rightarrow\left\{{}\begin{matrix}k=5\\q=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=75\\b=105\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}k=1\\q=11\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=15\\b=165\end{matrix}\right.\)

Phạm Hồng Mai
Xem chi tiết
Lê Song Phương
15 tháng 10 2023 lúc 22:06

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

Hoàng Tùng Lâm
15 tháng 10 2023 lúc 21:03

 Ko bt

Thanh Trà mun
15 tháng 10 2023 lúc 21:08

Tớ chịu🤔

Cỏ Ba Lá
Xem chi tiết