Tìm a và b, biết :
a) ƯCLN (a,b) = 6 và a nhân b = 180.
b) ƯCLN (a,b) = 5 và a + b = 40.
Tìm các số từ nhiên a,b (a<b) biết:
a, a+b= 336 và ƯCLN(a,b)=24
b, ƯCLN (a,b)=6 và BCNN(a,b)=36
c,BCNN(a,b)=150 và ab=3750
d, ab=180 và BCNN(a,b)=20.ƯCLN(a,b)
e, a+b=40 và BCNN(a,b)=7.ƯCLN(a,b)
g,ƯCLN(a,b)+BCNN(a,b)=21
Tìm 2 số nguyên dương a và b biết:
a, BCNN(a;b) = 240 và ƯCLN(a;b)
b, a.b = 180 và BCNN(a;b) = 60
c, a.b = 216 và ƯCLN(a;b) = 6
d, a:b = 2,6 và ƯCLN(a;b) = 5
e, a + b = 42 và BCNN(a;b) = 72
Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath
Nhớ xem và !
a, 24 và 10
b, 6 và 30
c, 6 và 36
d, <không có trường hợp nào>
e, 36 và 6
Chúc bạn học giỏi !
<Lưu ý : Bạn xem lại câu d>
d) Do (a,b) = 5 => a = 5m
b = 5n
( m,n ) = 1
a : b = 2,6 => a/b = 13/5 = 5m/5n => m = 13 ; n =5
=> a = 65 b = 25
Tìm a,b biết:
a)ƯCLN(a,b)=6 và a.b = 21
b)ƯCLN(a,b)=60 và a.b = 180
Cả câu a lẫn câu b đều không tồn tại nha bạn.
Câu a: \(a,b\) cùng chia hết cho 6 nên \(ab\) chia hết cho 36 (vô lí)
Câu b: \(a,b\) cùng chia hết cho 60 nên \(ab\) chia hết cho 3600 (vô lí)
Cũng có cách giải khác như sau:
Áp dụng định lí: \(ab=gcd\left(a,b\right)\times lcm\left(a,b\right)\)
Câu a: \(ab\) không chia hết cho \(gcd\left(a,b\right)\) nên vô lí.
Câu b: \(lcm\left(a,b\right)=3< gcd\left(a,b\right)\) nên cũng vô lí nốt.
Tìm 2 số nguyên dương a,b biết
a, BCNN(a,b)=240 và ƯCLN(a,b)=16
b, a.b=216 và ƯCLN(a,b)=6
c, a.b=180 và BCNN(a,b)=60
d, a:b=2,6 và ƯCLN(a,b)=5
e, a+b=42 vag BCNN(a,b)=72
Tìm hai số tự nhiên a và b biết:
a) a + b = 180 và ƯCLN (a,b) = 12; b) a . b = 720 và ƯCLN (a,b) = 6
Tìm hai số a và b biết rằng ƯCLN(a,b) = 6 và BCNN(a,b) = 180
\(a\cdot b=ƯCLN\left(a,b\right)\cdot BCNN\left(a,b\right)=6\cdot180=1080\)
ƯCLN(a,b)=6 nên \(\left\{{}\begin{matrix}a=6k\\b=6c\end{matrix}\right.\)
a*b=1080
=>6k*6c=1080
=>k*c=1080/36=30
=>(k,c)\(\in\){(1;30);(30;1);(-1;-30);(-30;-1);(2;15);(15;2);(-2;-15);(-15;-2);(3;10);(10;3);(-3;-10);(-10;-3);(5;6);(6;5);(-5;-6);(-6;-5)}
=>(a,b)\(\in\){(6;180);(180;6);(-6;-180);(-180;-6);(12;90);(90;12);(-12;-90);(-90;-12);(18;60);(60;18);(-18;-60);(-60;-18);(30;36);(36;30);(-30;-36);(-36;-30)}
Tìm các số tự nhiên a, b (a<b) biết :
a) a + b = 180 và ƯCLN(a, b) = 15. b) a + b = 224 và ƯCLN(a, b) = 28
\(a,ƯCLN\left(a,b\right)=15\\ \Rightarrow a=15k;b=15q\left(k,q\in N\right)\\ \Rightarrow15k+15q=180\\ \Rightarrow k+q=12\)
Mà \(\left(k;q\right)=1\) và \(k;q\in N\) nên \(k+q=1+11=7+5\)
Vì \(a< b\Rightarrow k< q\Rightarrow\left\{{}\begin{matrix}k=5\\q=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=75\\b=105\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}k=1\\q=11\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=15\\b=165\end{matrix}\right.\)
Tìm các số tự nhiên a và b (a<b), biết:
a) ƯCLN ( a, b ) = 15 và BCNN ( a, b ) = 180
b) ƯCLN ( a, b ) = 11 và BCNN ( a, b ) = 484
Trước tiên, ta cần chứng minh 2 bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\).
Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)
Chứng minh:
Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)
Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.
Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)
\(\Leftrightarrow kl-k-l+1\ge0\)
\(\Leftrightarrow kl+1\ge k+l\)
\(\Leftrightarrow dkl+d\ge dk+dl\)
\(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)
Vậy 2 bổ đề đã được chứng minh.
a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)
Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:
\(a\in\left\{15;30;45\right\}\)
Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)
Nếu \(a=30\) thì \(b=90\) (loại)
Nếu \(a=45\) thì \(b=60\) (thỏa)
Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)
Câu b làm tương tự.
Tìm số tự nhiên a và b biết rằng :
a) ƯCLN(a;b) = 15 và BCNN(a;b) gấp ƯCLN(a;b) 2100 lần
b) a . b = 180 và BCNN(a;b) gấp 20 lần ƯCLN(a;b)