Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Lam Quỳnh
Xem chi tiết
Nguyễn Linh Chi
1 tháng 12 2019 lúc 21:02

Ta có: \(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)

=> \(\left|2x+3\right|+\left|2x-1\right|\ge4\)(1)

Ta lại có: \(\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)

=> \(\left|2x+3\right|+\left|2x-1\right|\ge4\) (2)

Từ (1); (2) : \(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{3\left(x+1\right)^2+2}\)

<=> \(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\\\left(x+1\right)^2=0\end{cases}\Leftrightarrow x=-1}\)(TM)

Vậy:... 

Khách vãng lai đã xóa
Nguyễn Nữ Tú
Xem chi tiết
Hoàng Lê Bảo Ngọc
16 tháng 7 2016 lúc 14:04

a) Ta có : \(-\left|x\right|\le0\Leftrightarrow-\left|x\right|+2016\le2016\Leftrightarrow\frac{1}{2016-\left|x\right|}\ge\frac{1}{2016}\Leftrightarrow\frac{-6}{2016-\left|x\right|}\le-\frac{6}{2016}=-\frac{1}{336}\)

Dấu "=" xảy ra khi x = 0

Max A = \(-\frac{1}{336}\Leftrightarrow x=0\)

Hoàng Lê Bảo Ngọc
16 tháng 7 2016 lúc 14:04

b) tương tự

Nguyễn Nữ Tú
16 tháng 7 2016 lúc 20:22

câu b cũng ra là 0 có đúng ko bạn

Phạm Trần Minh Ngọc
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 10 2016 lúc 17:02

Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)

Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)

\(\Rightarrow xy+yz+zx=2016\)thay vào :

\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)

\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0

Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)

\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)

Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)

Lê Thành An
Xem chi tiết
tth_new
20 tháng 12 2019 lúc 7:26

Sửa đề: \(T=\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}}+\sqrt{1+\frac{1}{y^2}+\frac{1}{\left(y+1\right)^2}}+\frac{4}{\left(x+1\right)\left(x+1\right)}\)

Rồi để ý: \(1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{x}-\frac{1}{\left(x+1\right)}\right]^2+\frac{2}{x\left(x+1\right)}+1\)

\(=\left[\frac{1}{x\left(x+1\right)}\right]^2+\frac{2}{x\left(x+1\right)}+1=\left[\frac{1}{x\left(x+1\right)}+1\right]^2=\left[1+\frac{1}{x}-\frac{1}{x+1}\right]^2\)

Tương tự với y rồi thế vào căn là xong:D

Khách vãng lai đã xóa
Công Nghệ Speed
Xem chi tiết
Min
4 tháng 12 2015 lúc 21:32

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+\right)\left(x+3\right)}+...+\frac{1}{\left(x+2015\right)\left(x+2016\right)}=\frac{1}{x+2016}\)

\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+2015}-\frac{1}{x+2016}=\frac{1}{x+2016}\)

\(\frac{1}{x}-\frac{1}{x+2016}=\frac{1}{x+2016}\)

\(\frac{1}{x}-\frac{1}{x+2016}-\frac{1}{x+2016}=0\)

\(\frac{1}{x}-\frac{2x}{x+2016}=0\)

\(\frac{x+2016}{x\left(x+2016\right)}-\frac{2x}{x\left(x+2016\right)}=0\)

\(\frac{x+2016-2x}{x\left(x+2016\right)}=0\Leftrightarrow2016-x=0\Leftrightarrow x=2016\)

Doraemon
Xem chi tiết
Phạm Mỹ Châu
Xem chi tiết
Trần Minh Hoàng
1 tháng 4 2019 lúc 14:29
https://i.imgur.com/XIq9aow.jpg
Đào Thanh Huyền
Xem chi tiết
Đặng Ngọc
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
28 tháng 7 2019 lúc 16:56

Tham khảo nhé :

Cho a b  0 và 3a + 5b = 12,Tìm GTLN của P = ab,Cho a b c  0 và abc = 1,Chứng minh (a + 1)(b + 1)(c + 1) = 8,Q = a^2 + b^2 + c^2,Toán học Lớp 8,bà i tập Toán học Lớp 8,giải bà i tập Toán học Lớp 8,Toán học,Lớp 8